| 研究生: |
簡淑櫻 Chien, Su-Ying |
|---|---|
| 論文名稱: |
石英之超聲波量測 Ultrasonic Measurements in Quartz |
| 指導教授: |
余樹楨
Yu, Shu-Cheng 黃怡禎 Huang, Eugene |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 超聲波 、石英 |
| 外文關鍵詞: | ultrasonic, quartz |
| 相關次數: | 點閱:124 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究選取石英單晶、瑪瑙、石英岩、四稜砂岩、石英脈及二氧化矽玻璃等材料,在室溫室壓下進行超聲波實驗,藉以瞭解影響石英超聲波波速之因素以及其物理性質參數。
實驗結果顯示,石英在原子密集度越高、結構越簡單的情況下,超聲波傳遞的速度會越快;量測樣本內的裂隙越多(如石英脈),超聲波的回波越容易散射而不易被偵測到。在石英單晶中,由於原子排列方式的影響,平行c軸方向的波速快於垂直c軸方向,且石英單晶的速度分布較其他實驗材料集中;橫波分裂作用在單晶中特別明顯,使得單晶的速度異向性比多晶強,快慢橫波的差異性更大。顯示除了原子排列方式,超聲波的偏振方向亦會影響速度的進行。此外,夾雜有其他礦物成分的四稜砂岩因受其他因素影響(如膠結鬆散),使得超聲波速度較不受顆粒大小影響而低於其他材料。而瑪瑙受到纖維排列的影響,垂直於瑪瑙帶狀組織方向的波速快於平行帶狀組織方向的波速。
由體彈模量 與剪切模量 計算結果得知,受應力作用的石英脈在抗壓能力方面高於石英單晶與其他樣品;抗剪能力則以石英單晶較好。
Ultrasonic wave velocities in several types of quartz sample, including single crystal of quartz, agate, SiO2 glass, quartzite, and quartz veins were measured in this study in order to establish the relationship between the ultrasonic wave velocities and their structural and substructural parameters.
The present results show that the velocities are highly dependent upon the crystallographic orientation and the crystal defect substructures of quartz. The velocities along the c-axis of the quartz single crystal are faster than those along the a-axis. In the agate samples, the velocities measured parallel to the banding direction are slower than those along the radial direction. In addition, the velocities of P-wave and S-wave increase as the crystal size and compactness of the sample increase. The occurrence of the crystal defects such as cracks in quartz tend to produce the branching effect to the ultrasonic waves and thus make the echo of ultrasonic wave undetected, which in turn causes their velocities difficult to be measured.
The bulk moduli and shear moduli of quartz, as calculated with the measured velocities, suggest that the quartz veins are better than other samples in the resistance from applied pressure (higher bulk moduli), and single crystal is the best sample to resist distortion (higher shear moduli).
王讓甲 (1996) 聲波岩石分級和岩石動彈性力學參數的分析研究。地質出版社,共131頁。
余樹楨 (1993) 晶體之結構與性質。渤海堂文化公司,三刷,第61-62, 284-290頁。
吳承勖 (1993) 石英礦物的FT-IR光譜與機械性質分析。成功大學礦冶及材料科學研究所碩士論文,共52頁。
唐新民 (1996) 超音波入門及應用。無線電界雜誌社,第1-19頁。
陳承俊 (1993) 台灣北部地殼非均向性初探:岐異度與地質效應。台灣大學海洋研究所碩士論文,共68頁。
黃茂坤 (1996) 工業用超音波檢測實務彙編。華欣綜合印製工業股份有限公司,第1-15頁。
梁文宗 (1980) 利用地震S波的分離作用探討台灣北部地殼之非均向性。台灣大學海洋研究所碩士論文,共85頁。
趙偉志 (2001) 與溫度和壓力相關的鑭鍺鎵玻璃之彈性性質研究。輔仁大學物理研究所碩士論文,共69頁。
謝鴻森 (1997) 地球深部物質科學導論。科學出版社,第11-142頁。
Auld, B. A. (1973) Acoustic Fields and Waves in Solids. A Wiley-Interscience Publication, Volume I, pp.210-211.
Berry, L. G., Mason, B., Dietrich, R. V. (1983) Mineralogy, Second Edition. W. H. Freeman and Company, U.S.A., pp.82.
Clark, S. P. (1966) Handbook of Physical Constants, The Geological Society of America, INC., pp.98-103.
Cowley, E. R. and Gross, J. (1991) Lattice dynamics of a pair potential model of a-quartz. J. Chem. Phys., 95:8357-8361.
Crampin, S. and Lovell J. H. (1991) A decade of shear-wave splitting in the Earth’s crust: what does it mean? What use can we make of it? And what should we do next? Geophys. J. Int., vol. 107, pp.387-407.
Downs, B., Sinnaswamy, K. and Bartelmehs, K. (2001) Beta Version. Program to draw crystal structures and molecules.
Klein, C. and Hurlbut, Jr. C. S. (1993) Manual of Mineralogy, 21st ed. John Wiley, New York.
McSkimin, H. J., Anderatch, P., Jr. and Thurston, R. N. (1965) Elastic Moduli of Quartz versus Hydrostatic Pressure at 25℃ and –195.8℃. Journal of Applied Physics, vol. 36, no. 5, pp. 1624-1632.
Nye, J. F. (1992) Physical Properties of Crystals. Clarendon Press Oxford, pp.131-149.
Purton, J., Jones R., Catlow, C. R. A. and Lesie, M. (1993) Ab initio potentials for the calculation of the dynamical and elastic properties of a-quartz. Phys. Chem. Min.,pp.19:392-400.