簡易檢索 / 詳目顯示

研究生: 傅昱傑
Fu, Yu-Chieh
論文名稱: 電力供應及二氧化碳排放限制對產業的影響:以台灣、日本及韓國為例
Impact Analysis of the Restriction of Electricity Supply and Carbon Dioxide Emission on the Industry: A Case Study of Taiwan, Japan and Korea
指導教授: 吳榮華
Wu, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 84
中文關鍵詞: 電力供應CO2排放世界投入產出資料庫投入產出線性規劃
外文關鍵詞: Electricity supply, CO2 emissions, WIOD, Input-Output Linear Programming
相關次數: 點閱:156下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電力供應是經濟成長的重要因素之一,一國之經濟成長會增加電力需求,然而受限於季節用電、機組運轉及天災等因素,電力供應量之穩定日趨重要。同時隨著化石燃料使用增加,溫室氣體的排放亦會上升,各國也為了減少溫室氣體排放而提出國家自定預期貢獻,因此電力供應短缺與CO2排放減少為各國共同關注的議題。
    以往對跨國研究之文獻並沒有以投入產出線性規劃(Input-Output Linear Programming, IOLP)模型分析電力供應短缺與CO2排放減少對產業的影響,本研究結合IOLP模型與世界投入產出資料庫(World Input-Output Database, WIOD),以台灣、日本及韓國為研究範圍。目標函數設為最大化國內生產毛額(GDP),藉以探討電力供應短缺與CO2排放減少對產業之影響。
    研究結果顯示,以電力供應短缺而言,台灣、日本及韓國在電力供應短缺10%下,GDP損失率最高為韓國,台灣及韓國產值下降最為顯著的部門皆為電腦通信及電子產品製造業,日本則為運輸工具製造業。以CO2排放減少而言,台灣、日本及韓國在CO2排放減少10%情境下,GDP損失率最高為日本,台灣之化學製品製造業所受衝擊最大,日本為運輸工具製造業,韓國則為化學製品製造業。
    就跨國比較而言,研究顯示台灣、日本及韓國在面臨電力供應短缺與CO2排放減少時,對產業的影響很大,特別是能源密集產業,研究結果顯示電力穩定供應的重要性。產業宜改善生產單位產值之電力消費,並持續落實政府的節能減碳措施。同時日本的電力消費以服務業為主,導致電力供應短缺時,日本服務業受影響的程度高於台灣及韓國的服務業。

    Electricity supply is one of the important factors of economic growth. The economic growth of a country will increase the demand for electricity. However, due to factors such as seasonal electricity consumption, equipment operation and natural disasters, the stability in electricity supply has become increasingly important. With the increase in the use of electricity and fossil fuels, greenhouse gas emissions will also rise. Considering, countries have to reduce greenhouse gas emissions and propose their own Intended Nationally Determined Contributions (INDCs). The shortage of electricity supply and CO2 emissions reduction arouse countries attention.

    In previous literature, which focused on cross-national research, did not analyze the impact of the shortage of electricity supply and the reduction of CO2 emissions on the industry by using the input-output linear programming model. This study combines the IOLP model with the world input-output database, taking Taiwan, Japan and Korea as the research scope. The objective function is to maximize the gross domestic product to explore the impact of the shortage of electricity supply and the reduction of CO2 emissions on the industry.

    The result shows that in the scenarios of 10% in electricity supply shortage, Korea has the highest GDP loss rate. The sectors which have most significant output decline in Taiwan and South Korea are computer communications and electronics manufacturing industry, while Japan is the transportation equipment manufacturing industry. In terms of CO2 emissions reductions in 10% scenarios of reduction in CO2 emissions, Japan has the highest GDP loss rate. The sectors which have most significant output decline in Taiwan is chemical manufacturing industry, while Japan is the transport tool manufacturing industry. South Korea has the most significant output decline in the sectors of chemical manufacturing industry.

    In cross-country comparisons, the study shows that the shortage of electricity supply and the reduction of CO2 emissions have a great impact on industries especially the energy-intensive industries. The results show the importance of a stable supply of electricity. It is suggested that the industry will improve the electricity consumption per unit of output and continue to implement the government's energy saving and carbon reduction measures. Meanwhile, shortages of electricity supply lead to the result that Japan's service industry is affected more than Taiwan's and Korea's, because service industry is the major consumer of electricity in Japan.

    中文摘要 Ⅰ 英文延伸摘要 II 誌謝 Ⅵ 圖目錄 Ⅸ 表目錄 Ⅹ 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究方法與架構 3 1.4 研究範圍與限制 5 第二章 文獻回顧 6 2.1 IOLP模型於區域發展及能源之文獻 6 2.2 IOLP模型於溫室氣體之相關文獻 12 2.3 WIOD資料庫於能源及溫室氣體之相關文獻 16 2.4 本章小結 19 第三章 台灣、日本及韓國之產業與能源概況 20 3.1 台灣之產業結構與能源概況 21 3.2 日本之產業結構與能源概況 27 3.3 韓國之產業結構與能源概況 33 3.4 本章小結 39 第四章 研究方法 40 4.1 需求面投入產出分析 40 4.2 線性規劃之目標函數及限制式 43 4.3 本章小結 46 第五章 資料處理與情境設計 47 5.1 世界投入產出資料庫簡介及彙整 47 5.2 目標函數及限制式參數之計算 51 5.3 情境設計 56 5.4 本章小結 57 第六章 實證結果 58 6.1 電力供應短缺對產業影響之分析 58 6.2 CO2排放減少對產業影響之分析 67 6.3 台灣、日本及韓國GDP與產業影響之比較 76 6.4 本章小結 78 第七章 結論與建議 79 7.1 結論 79 7.2 建議 80 參考文獻 81

    中文部分:
    1.台灣電力公司,預估尖峰備轉容量率,網址:http://stpc00601.taipower.com.tw/loadGraph/loadGraph/load_reserve.html
    2.台灣電力公司,歷年發電量占比,網址:
    http://www.taipower.com.tw/content/new_info/new_info-c37.aspx
    3.台灣「國家自定預期貢獻」(INDC) (核定本)。
    4.行政院環境保護署(2015),國家溫室氣體登錄平台盤查與登錄指引,附錄二-我國常用排放係數。
    5.行政院核能研究所(2016),能源資訊平台,台灣電力消費趨勢評析。
    6.李慧琳、洪敏睿(2015),「夏季缺電之最適限電策略: 農業-食品生產鏈亦須共體時艱?」,農業經濟叢刊,20(2),53-87。
    7.李高朝、李秀娟及林師模(2012),「瓶頸部門、瓶頸資源與經濟成長」,臺灣經濟預測與政策,42(2),37-80。
    8.吳冠宏(2015),「亞洲主要國家CO2排放之驅動力因素比較分析」,中原大學國際經營與貿易研究所碩士論文。
    9.林裕文(1994),「二氧化碳排放限制下我國產業與能源使用因應策略-多目標規劃應用」,國立成功大學資源工程所碩士論文。
    10.孫采宜(2016),「應用世界投入產出資料庫分析APEC經濟體之二氧化碳排放變動」,國立成功大學資源工程所碩士論文。
    11.黃浩軒(2015),「能源消費及二氧化碳排放變動影響因素之跨國比較—以台灣、日本及韓國為例」,國立成功大學資源工程所碩士論文。
    12.經濟部能源局(2014),能源平衡表。
    13.經濟部統計處,工業產銷存動態調查,網址:
    https://www.moea.gov.tw/Mns/dos/content/Content.aspx?menu_id=6820
    14.經濟部能源局,能源統計資料查詢系統,網址:
    https://www.moeaboe.gov.tw/wesnq/Views/B01/wFrmB0102.aspx
    15.鄭博仁(2008),「台灣家戶消費對自然資源折耗之衝擊--混合投入產出模型/線性規劃之應用」,台北大學都市計劃研究所碩士論文。
    16.鄭欽龍(1994),「水的經濟價值評估—線性規劃法之應用」,國立臺灣大學農學院實驗林研究報告,149-160。

    英文部分:
    1. Altan, Ş., Dogan, S., and Iloglu, H. (2016). Maximization of National Income with Linear Programming and Input-Output Analysis: An Application for Turkey. Journal of Business & Economic Policy, 3(2), 29-37.
    2. Chang, N. (2015). Changing industrial structure to reduce carbon dioxide emissions: a Chinese application. Journal of Cleaner Production, 103, 40-48.
    3. Chen, C.Y. and Vella, A. (1994). Estimating the economic costs of electricity shortages using input–output analysis: the case of Taiwan. Applied Economics, 26(11), 1061–1069.
    4. Chenery, H. B. and Kretschmer, K. S. (1956). Resource Allocation for Economic Development. Econometrica, 24(4), 365–399.
    5. Cortés-Borda, D., Ruiz-Hernández, A., Guillén-Gosálbez, G., Llop, M., Guimerà, R. and Sales-Pardo, M. (2015). Identifying strategies for mitigating the global warming impact of the EU-25 economy using a multi-objective input–output approach. Energy Policy, 77, 21-30.
    6. de Carvalho, A. L., Antunes, C. H., Freire, F. and Henriques, C. O. (2015). A hybrid input–output multi-objective model to assess economic–energy–environment trade-offs in Brazil. Energy, 82, 769-785.
    7. Glass, J.C. and Kiountouzis, E. (1976). Linear Programming Models for Development Planning in Northern Ireland. Economic and Social Review, 7(2), 121–141.
    8. He, P., Ng, T. S., and Su, B. (2015). Energy import resilience with input–output linear programming models. Energy Economics, 50, 215-226.
    9. International Energy Agency (2016). Key world energy statistics. 48-57.
    10. IPCC. (2006) 2006 IPCC guidelines for national greenhouse gas inventories.
    11. James, D.E., Musgrove, A.R. deL. and Stocks, K.J. (1986). Integration of an economic input-output model and a linear programming technological model for energy systems analysis. Energy Economics, 8(2), 99–112.
    12. Korea Energy Economics Institute (2015). 2014 Energy Consumption Survey.
    13. Korea Energy Economics Institute (2015). Energy Info. Korea. 50-53.
    14. Kondo, Y. and Nakamura, S. (2005). Waste input–output linear programming model with its application to eco-efficiency analysis. Economic Systems Research, 17(4), 393-408.
    15. Miller, R. E. and Blair, P. D. (2009). Input-output analysis: foundations and extensions. Cambridge University Press.
    16. Oliveira, C. and Antunes, C. H. (2011). A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal. Energy, 36(5), 2856-2866.
    17. Rose, A., Benavides, J., Chang, S. E., Szczesniak, P., and Lim, D. (1997). The regional economic impact of an earthquake: Direct and indirect effects of electricity lifeline disruptions. Journal of Regional Science, 37(3), 437-458.
    18. San Cristóbal, J. R. (2010). An environmental/input–output linear programming model to reach the targets for greenhouse gas emissions set by the kyoto protocol. Economic Systems Research, 22(3), 223-236.
    19. Timmer, M., Erumban, A. A., Gouma, R., Los, B., Temurshoev, U., de Vries, G. J. and Pindyuk, O. (2012). The world input-output database (WIOD): contents, sources and methods (No. 20120401). Institue for International and Development Economics.
    20. Voigt, S., De Cian, E., Schymura, M. and Verdolini, E. (2014). Energy intensity developments in 40 major economies: Structural change or technology improvement?. Energy Economics, 41, 47-62.
    21. World input-output database. Website: http://www.wiod.org/home
    22. Zhongxiu, Z. and Yunfeng, Y. (2014). Consumption-based carbon emissions and international carbon leakage: An analysis based on the WIOD database. Social Sciences in China, 35(3), 174-186.

    日文部分:
    1. 資源エネルギー庁(2014),総合エネルギー統計。
    2. 資源エネルギー庁(2016),エネルギー白書2016。

    無法下載圖示 校內:2022-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE