| 研究生: |
張日信 Zhang, Ri-Xin |
|---|---|
| 論文名稱: |
以數值及實驗方法探討具有相變化材料之熱沉置於空腔內之逆向自然對流熱傳 Numerical and Experimental Study of Inverse Natural Convection Heat Transfer for Heat Sink with PCM in Cavity |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 逆算法 、鰭片 、自然對流 、相變化 |
| 外文關鍵詞: | inverse method, fin, natural convection, phase change |
| 相關次數: | 點閱:88 下載:55 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以逆向數值方法、最小平方法及方均根誤差搭配實驗量測來探討不同鰭片間距、鰭片高度及是否具相變化熱沉,矩形空腔內矩形鰭片之熱傳特性與流動特性。將熱電偶安裝於實驗內之溫度量測點,並將所得到之溫度值以校正公式進行校正,並使用ANSYS公司的FLUENT配合最小平方法與均方根誤差求得熱源之功率與合適之紊流模型。並使用其後處理功能得到各模型之流場圖與溫度圖,了解空腔內之熱傳特性與流動特性。
結果顯示在三鰭片的模型下,不論鰭片高低,皆選用RNG k-ε模型配合標準壁面函數較為適當,而具相變化熱沉的模型則是選用零方程式較為適當。鰭片高度的增加導致熱對流係數下降,但因增加散熱面積,使散熱效果提升;鰭片間距的增加使熱對流係數上升,因此散熱效果提升,加入相變化熱沉使散熱效果提升。配合後處理軟體觀察各模型之溫度場與速度場,使我們更加了解空腔內之熱傳現象。
This article investigates the heat transfer and flow characteristics of rectangular fins inside a rectangular cavity using inverse methods, the least squares method, and the root mean square error, combined with experimental measurements. The study explores the effects of different fin spacing, fin height, and the presence of phase change heat sink on the heat transfer and flow behavior of rectangular fins within the cavity. The results indicate that in the three-fin model, using the RNG k-ε turbulence model with the standard wall function is more appropriate for all cases, while the model with a phase change heat sink is better suited with the zero-equation model. Increasing the fin height leads to a decrease in the heat convection coefficient; however, it also increases the heat dissipation area, resulting in improved heat dissipation performance. On the other hand, increasing the fin spacing leads to an increase in the heat convection coefficient, thereby enhancing the heat dissipation effectiveness. The addition of the phase change heat sink further improves the heat dissipation performance. By employing post-processing software to observe the temperature and velocity fields for each model, we gain a deeper understanding of the heat transfer phenomena within the cavity.
1. Bilgen, E., Natural convection in cavities with a thin fin on the hot wall. International Journal of Heat and Mass Transfer, 2005. 48(17): p. 3493-3505.
2. Bayrak, F., H.F. Oztop, and F. Selimefendigil, Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Solar Energy, 2019. 188: p. 484-494.
3. Miroshnichenko, I.V. and M.A. Sheremet, Turbulent natural convection heat transfer in rectangular enclosures using experimental and numerical approaches: A review. Renewable and Sustainable Energy Reviews, 2018. 82: p. 40-59.
4. Frederick, R.L. and S.G. Moraga, Three-dimensional natural convection in finned cubical enclosures. International Journal of Heat and Fluid Flow, 2007. 28(2): p. 289-298.
5. Elatar, A., M.A. Teamah, and M.A. Hassab, Numerical study of laminar natural convection inside square enclosure with single horizontal fin. International Journal of Thermal Sciences, 2016. 99: p. 41-51.
6. Chen, H.-T., et al., Numerical and experimental study of mixed convection heat transfer and fluid flow characteristics of plate-fin heat sinks. International Journal of Heat and Mass Transfer, 2017. 111: p. 1050-1062.
7. Shi, X. and J.M. Khodadadi, Laminar Natural Convection Heat Transfer in a Differentially Heated Square Cavity Due to a Thin Fin on the Hot Wall. Journal of Heat Transfer, 2003. 125(4): p. 624-634.
8. Abdulrahman, R.S., F.A. Ibrahim, and S.F. Dakhil, Development of paraffin wax as phase change material based latent heat storage in heat exchanger. Applied Thermal Engineering, 2019. 150: p. 193-199.
9. Khan, Z. and Z.A. Khan, Experimental investigations of charging/melting cycles of paraffin in a novel shell and tube with longitudinal fins based heat storage design solution for domestic and industrial applications. Applied Energy, 2017. 206: p. 1158-1168.
10. Liu, C., et al., Effect of PCM thickness and melting temperature on thermal performance of double glazing units. Journal of Building Engineering, 2017. 11: p. 87-95.
11. Humaira Tasnim, S. and M.R. Collins, Numerical Analysis of Heat Transfer in a Square Cavity with a Baffle on the Hot Wall. International Communications in Heat and Mass Transfer, 2004. 31(5): p. 639-650.
12. Chen, H.-T., et al., Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger. International Journal of Heat and Mass Transfer, 2017. 109: p. 378-392.
13. Nada, S.A., Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate. International Journal of Heat and Mass Transfer, 2007. 50(3-4): p. 667-679.
14. Chen, H.-T., M.-C. Lin, and J.-R. Chang, Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall. International Journal of Heat and Mass Transfer, 2018. 124: p. 1217-1229.
15. Liu, Y., C. Lei, and J.C. Patterson, Natural convection in a differentially heated cavity with two horizontal adiabatic fins on the sidewalls. International Journal of Heat and Mass Transfer, 2014. 72: p. 23-36.
16. Baskaya, S., M. Sivrioglu, and M. Ozek, Parametric study of natural convection heat transfer from horizontal rectangular fin arrays. International Journal of Thermal Sciences, 2000. 39(8): p. 797-805.
17. Harahap, F., H. Lesmana, and I.K.T.A.S. Dirgayasa, Measurements of heat dissipation from miniaturized vertical rectangular fin arrays under dominant natural convection conditions. Heat and Mass Transfer, 2005. 42(11): p. 1025-1036.
18. Chen, Q. and W. Xu, A zero-equation turbulence model for indoor airflow simulation. Energy and Buildings, 1998. 28(2): p. 137-144.
19. Launder, B.E. and B.I. Sharma, Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in heat and mass transfer, 1974. 1(2): p. 131-137.
20. Launder, B.E. and D.B. Spalding, PAPER 8 - THE NUMERICAL COMPUTATION OF TURBULENT FLOWS, in Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, S.V. Patankar, et al., Editors. 1983, Pergamon. p. 96-116.
21. Chen, H., et al., Estimation of natural-convection heat-transfer characteristics from vertical fins mounted on a vertical plate. Computers, Materials and Continua, 2011. 22(3): p. 239-260.
22. Chen, H.T., L.S. Liu, and S.K. Lee, Estimation of heat-transfer characteristics from fins mounted on a horizontal plate in natural convection. CMES-Computer Modeling in Engineering and Sciences, 2010. 65(2): p. 155-178.
23. Chen, H.-T., J.-P. Song, and Y.-T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers. International journal of heat and mass transfer, 2005. 48(13): p. 2697-2707.
24. 何格彰, 矩形鰭片陣列於矩形外殼內之熱傳特性預測. 2010.