簡易檢索 / 詳目顯示

研究生: 郭致顯
Kuo, Chih-Hsien
論文名稱: 電紡亂排聚苯乙烯溶液液柱形態與纖維紅外線光譜分析
Morphology of electrospinning jet and IR analysis of atactic polystyrene fibers
指導教授: 王紀
Wang, Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 161
中文關鍵詞: 電紡絲亂排聚苯乙烯液柱形態
外文關鍵詞: electrospinning, atactic polystyrene, morphology of jet
相關次數: 點閱:66下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用鄰二氯苯做為溶劑配製亂排聚苯乙烯溶液並在室溫下電紡14、21與28 wt. %溶液,其在25 oC下黏度分別為514、3828與23328 cP(etao),探討溶液黏度對電紡液柱與纖維直徑(df)的影響。

    以氦-氖雷射光打擊電紡不同濃度溶液所得液柱,分別沿赤道方向掃描距針底(z=0)不同距離處所得散射圖案,由掃描所得強度分布圖中第一個強度最大值對應的散射向量值(qm1)計算液柱直徑(dj(z)):dj=beta/qm1,14、21與28 wt. %溶液對應的beta由Mie theory可得分別為12.61、12.69與12.76。發現不同溶液濃度下均存在dj(z)~z-n關係式,n值分別為1.32、1.55與0.58。發現液柱尾端直徑(dj,e)隨溶液黏度上升而有小幅度地增加,dj,e~etao0.14。在溶劑揮發可忽略的假設下,可利用質量守恆式計算液柱速度(Vj(z)=4Q/pidj2(z)),發現液柱尾端處的速度(Vj,e)隨黏度上升而下降。

    使用乾玻片收集中、尾端的電紡液柱,以SEM可觀察到其表面具有直徑為0.14~0.38 um的孔洞結構。以含有非溶劑甲醇的玻片收集中、尾段的液柱,使aPS析出以保留結構。在SEM下發現液柱具有裂痕,可進一步觀察到液柱內部存在排列整齊的條狀結構。
    以高速攝影機觀察電紡不同濃度溶液所得液柱甩動行為。將whipping區間中液柱的甩動形態分為兩種,水平甩動與螺旋甩動。分別測量不同形態下液柱因甩動而形成的波形隨時間的變化,可得液柱的側向與軸向速度,發現均隨溶液黏度增加而下降。

    最後以FT-IR分析電紡不同濃度溶液所得纖維是否具有與分子鏈形態相關的1262、1098與803 cm-1的吸收峰存在,結果顯示均只存在接近1098 cm-1的1091 cm-1吸收峰。

    In this study, o-DCB was used as solvent to prepare aPS/o-DCB solutions. In order to reveal the effects of solution viscosity on the diameters of the electrospinning jet and as-spun fibers, the electrospinning of aPS/o-DCB solutions with 14, 21 and 28 wt.% were performed at room temperature. The measured viscosities of the three solutions at 25 oC are 514, 3828 and 23328 cP, respectively.

    He-Ne laser beam was showed on the electrospinning jet with different concentrations, and the scattering patterns on the screen behind the jet were scanned along the equator direction to obtain the intensity profiles. From the profile, the magnitude of the scattering vector of the first intensity maximum (qm1) was determined. Jet diameter profiles (dj(z)) obtained from the solutions with different concentrations were constructed by using dj(z)=beta/qm1. The calculated beta values which obtained from Mie theory are 12.61, 12.69 and 12.76 for 14, 21 and 28 wt.% solution. The decaying rate of dj(z) with z follows a scaling law of dj(z)~z-n. The values of exponent n are 1.32, 1.55 and 0.58 for 14, 21 and 28 wt.%, respectively. The jet diameter at straight jet-end position (dj,e) slightly increased with increasing solution viscosity, it follows a scaling law of dj,e~etao0.14. Assuming that no solvent evaporation took place in the straight jet region, the jet velocity (Vj) could be calculated by mass balance: Vj(z)=4Q/pidj2(z). The jet velocity at jet-end position (Vj,e) decreased with increasing solution viscosity.
    Slides were used to collect liquid jet during electrospinning. In SEM observation, there are porous structures with diameter of 0.14 to 0.38 um on the surface of collected jet. In order to freeze the structure inside the jet, slides with dropped non-solvent (methanol) were used to collect liquid jet. Some jet with cracks on the surface can be observed in SEM images, there are oriented string structures inside the jet.

    Using high-speed camera to observe the behavior of electrospinning jet obtained from aPS solutions with different concentrations. In jet whipping region, the jet behavior can be classified into two different types, one is the horizontal whipping mode and the other is the spiral whipping mode. We measured the positions of wave-like jet with time to obtain the lateral and axial velocities of jet. They both decreased with increasing viscosity.

    Finally, FT-IR was used to characterize the as-spun aPS membrane to check whether it have three absorption bands of 1262, 1098 and 803 cm-1. These three bands relate to the structures of molecular chain in as-spun fibers. From the results, it shows that only one band of 1098 cm-1 which closes to the band position of 1091 cm-1 appear for the as-spun fibers obtained from 14, 21 and 28 wt% solutions.

    摘要 ii Extended Abstarct iii 誌謝 xvii 目錄 xviii 表目錄 xxi 圖目錄 xxii 符號 xxvii 一、前言 1 二、簡介 2 2.1電紡原理 2 2.2高速攝影機 3 2.3液柱雷射 4 2.3.1光 4 2.3.2He-Ne雷射 5 2.3.3布拉格定律(Bragg’s law) 5 2.4傅立葉轉換紅外光譜儀 6 2.4.1比爾定律(Beer’s law) 6 2.4.2傅立葉轉換原理 7 三、文獻回顧 18 3.1聚苯乙烯 (Polystyrene, PS) 18 3.2模擬液柱拉伸 18 3.3拉伸誘導相分離(stretching induced phase separation) 19 3.4電紡液柱的甩動形態 21 3.5電紡產物的形態 23 3.6聚苯乙烯纖維應用 24 四、實驗 39 4.1實驗藥品 39 4.2實驗儀器 39 4.2.1電紡溶液 39 4.2.2電紡絲儀器 40 4.2.3液柱雷射儀器 42 4.2.4 纖維膜測量儀器 42 4.2.5分析儀器 43 4.3 實驗步驟 44 4.3.1 電紡絲溶液配製 44 4.3.2電紡絲實驗 44 4.3.3以雷射散射方式量測電紡絲液柱直徑 45 4.3.4 以高速攝影機拍攝電紡絲液柱甩動形態 45 4.3.5 以玻片收集電紡絲液柱 46 4.3.6 OM實驗步驟 46 4.3.7 SEM實驗步驟 47 4.3.8 aPS薄膜製備步驟 47 4.3.9 FTIR實驗步驟 47 4.4 分析方式 49 4.4.1 Cone Height 測量 49 4.4.2液柱長度測量 49 4.4.3彎曲液柱側向位置和振幅測量 49 4.4.4彎曲液柱軸向位置測量 50 4.4.5液柱半波長測量 50 4.4.6雷射圖譜分析 50 4.5實驗流程圖 52 五、結果與討論 61 5.1 溶液性質 61 5.2 溶液濃度對電紡製程的影響 62 5.2.1共同可操作電壓區間 62 5.2.2Cone Height與液柱長度變化 63 5.2.3以雷射散射分析電紡液柱直徑 64 5.2.4液柱形態與甩動速度分析 66 5.2.5纖維形態 70 5.3 纖維紅外線光譜分析 71 六、結論 128 七、參考文獻 129 八、附錄 135

    [1] E. Simon, “Ueber den flüssigen Storax (Styrax liquidus)”, Annalen der Chemie 31, 265-277 (1839).
    [2] J. Maul, B. G. Frushour, J. R. Kontoff, H. Eichenauer, K. H. Ott, C. Schade, “Polystyrene and Styrene Copolymers”, Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH, Weinheim, 481 (2007).
    [3] T. S. Carswell, R. F. Hayes, H. K. Nason, “Physical Properties of Polystyrene as Influenced by Temperature”, Industrial and Engineering Chemistry 34, 454 (1942).
    [4] F. T. Farmer, “Electrical Properties of Polystyrene”, NATURE 150, 521 (1942).
    [5] C. M. Hansen, “The Three Dimensional Solubility Parameter and Solvent Diffusion Coefficient and Their Importance in Surface Coating Formulation”, Copenhagen: Danish Technical Press, 13 (1967).
    [6] J. Zeleny, “The Electrical Discharge from Liquid Points, and a Hydrostatic Method of Measuring the Electric Intensity at Their Surface”, The Physical Review 3, 69 (1914).
    [7] A. Formhals, US patent No. 1975504 (1934)
    [8] A. F. Spivak, Y. A. Dzenisa, “Asymptotic decay of radius of a weakly conductive viscous jet in an external electric field”, Applied Physics Letters 73, 3067 (1998).
    [9] M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, “Electrospinning and electrically forced jets: I. Stability theory’’, Physics of Fluids 13, 2201 (2001)
    [10] M. M. Hohman, M. Shin, G. Rutledge, M. P. Brenner, ‘‘Electrospinning and electrically forced jets: II. Applications’’, Physics of Fluids 13, 2221 (2001)
    [11] J. J. Feng, “The stretching of an electrified non-Newtonian jet: A model for electrospinning”, Physics of Fluids 14, 3912 (2002).
    [12] M. E. Helgeson, K. N. Grammatikos, J.M. Deitzel, N.J. Wagner, “Theory and kinematic measurements of the mechanics of stable electrospun polymer jets”, Polymer 49, 2924-2936 (2008).
    [13] R. Sattler, S. Gier, J. Eggers, C.Wagner, “The final stages of capillary break-up of polymer solutions”, Physics of Fluids 24, 023101 (2012).
    [14] R. G. Larson, “Flow-induced mixing, demixing, and phase transitions in polymeric fluids”, Rheologica Acta 31, 497-520 (1992).
    [15] A. V. Semakov, V. G. Kulichikhin, A. K. Tereshin, S. V. Antonov, A. Y. Malkin, “On the Nature of Phase Separation of Polymer Solutions at High Extension Rate”, Journal of Polymer Science, Part B: Polymer Physics 53, 559-565 (2015).
    [16] M. Cromer, M. C. Villet, G. H. Fredrickson, L. G. Leal, R. Stepanyan, M. H. Bulters, “Concentration fluctuations in polymer solutions under extensional flow”, Journal of Rheology 57, 1211 (2013).
    [17] M. Derakhshandeh, S. G. Hatzikiriakos, “Flow-induced crystallization of high-density polyethylene: the effects of shear and uniaxial extension”, Rheologica Acta 51, 315–327 (2012).
    [18] C. Hadinata, D. Boos, C. Gabriel, E. Wassner, R€ullmann, N. Kao, M. Laun, “Elongation-induced crystallization of a high molecular weight isotactic polybutene-1 melt compared to shear-induced crystallization”, Journal of Rheology 51, 195–215 (2007).
    [19] A. Peterlin, “Crystallization From a Strained Melt or Solution”, Polymer Engineering and Science 16, 126-137 (1976).
    [20] M. Richard-Lacroix, C. Pellerin, “Partial Disentanglement in Continuous Polystyrene Electrospun Fibers”, Macromolecules 48, 37-42 (2015).
    [21] M. Richard-Lacroix, C. Pellerin, “Orientation and Partial Disentanglement in Individual Electrospun Fibers: Diameter Dependence and Correlation with Mechanical Properties”, Macromolecules 48, 4511-4519 (2015).
    [22] GI. Taylor, “Proceedings of the 12th international congress of applied Mechanics”, Springer-Verlag Berlin Heidelberg, 382-388 (1968).
    [23] B. Tchavdarov, A. L. Yarin, S. Radev, “Buckling of thin liquid jets”, Journal of Fluid Mechanics 253, 593-615 (1993).
    [24] A. L. Yarin, B. M. Tchavdarov, “Onset of folding in plane liquid films”, Journal of Fluid Mechanics 307, 85-99 (1996).
    [25] N. M. Ribe, J. R. Lister, S. Chiu-Webster, “Stability of a dragged viscous thread: Onset of “stitching” in a fluid-mechanical “sewing machine”, Physics of Fluids 18, 124105 (2006).
    [26] T. Han, D. H. Reneker, A. L. Yarin, “Buckling of jets in electrospinning”, Polymer 48, 6064-6076 (2007).
    [27] C. P. Carroll, Y. L. Joo, “Electrospinning of viscoelastic Boger fluids: Modeling and experiments”, Physics of Fluids 18, 053102(2006).
    [28] D. H. Reneker, A. L. Yarin, H. Fong, S. Koombhongse, “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics 87, 4531 (2000).
    [29] A. L. Yarin, S. Koombhongse, D. H. Reneker, “Bending instability in electrospinning of nanofibers”, Journal of Applied Physics 89, 3018 (2001).
    [30] D. H. Reneker, W. Kataphinan, A. Teron, E. Zussman, A. L. Yarin, “Nanofiber garlands of polycaprolactone by electrospinning”, Polymer 43, 6785-6794 (2002).
    [31] G. Eda, J. Liu, S. Shivkumar, “Solvent effects on jet evolution during electrospinning of semi-dilute polystyrene solutions”, European Polymer Journal 43, 1154-1167 (2007).
    [32] G. Eda, S. Shivkumar, “Bead-to-Fiber Transition in Electrospun Polystyrene”, Journal of Applied Polymer Science 106, 475-487 (2007).
    [33] D. N. Rockwood, D. B. Chase, R. E. Akins, J. F. Rabolt, “Characterization of electrospun poly(N-isopropyl acrylamide) fibers”, Polymer 49, 4025-4032 (2008).
    [34] M. G. McKee, G. L. Wilkes, R. H. Colby, T. E. Long, “Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters”, Macromolecules 37, 1760 (2004).
    [35] P. Gupta, C. Elkins, T. E. Long, G. L. Wilkes, “Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent”, Polymer 46, 4799 (2005).
    [36] H. Fong, I. Chun, D. H. Reneker, “Beaded nanofibers formed during electrospinning”, Polymer 40, 4585 (1999).
    [37] A. L. Yarin, S. Koombhongse, D. H. Reneker, “Bending instability in electrospinning of nanofibers”, Journal of Applied Physics 89, 3018 (2001).
    [38] M. Rubinstein, R. H. Colby, “Polymer physics”, Oxford: Oxford University Press, 440 (2003).
    [39] B. Ding, M.R. Wang, X.F. Wang, J.Y. Yu, G. Sun, “Electrospun
    nanomaterials for ultrasensitive sensors”, Materials Today 13, 16
    (2010).
    [40] L. Wannatong, A. Sirivat, P. Supaphol, “Effects of solvents on
    electrospun polymeric fibers: preliminary study on polystyrene”,
    Polymer International 53, 1851–1859 (2004).
    [41] S. O. Alayande, N. Hlengilizwe, E. O. Dare, A. M. Msagati, A. K. Akinlabi, P. O. Aiyedum, “Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting”, Applied Physics A 122, 392 (2016).
    [42] T. Ueki, A. Yoshihara, Y. Teramura, M. Takai, “Fast and selective cell isolation from blood sample by microfiber fabric system with vacuum aspiration”, Science and Technology of Advanced Materials 17, 807 (2016).
    [43] H. Ke, E. Feldman, P. Guzman, J. Cole, Q. Wei, B. Chu, A. Alkhudhiri, R. Alrasheed, B. S. Hsiao, “Electrospunpoly styrene nanofibrous membranes for direct contact membrane distillation”, Journal of Membrane Science 515, 86-97 (2016).
    [44] 陳軍, 三本將史, 羅丞曜譯, “圖解光與雷射應用”, 世茂出版, 11-140 (2010).
    [45] 王應瓊, “儀器分析”, 中央圖書出版社, 62-63 (2002).
    [46] Skoog, D. A., F. J. Holler, T.A. Nieman, “Principles of instrumental analysis”, Saunders College Publishing, 182-428 (1998).
    [47] 王明光, 王敏昭, “實用儀器分析”, 國立編譯館 合記圖書出版社, 346 (2003).
    [48] 高淑雅, “高溫電紡聚乙烯奈米纖維及其微結構”, 國立成功大學, 40 (2010).
    [49] J. Doshi, D. H. Reneker, “Electrospinning process and applications of electrospun fibers”, Journal of Electrostatics 35, 151 (1995).
    [50] C. S.-C. Yang, P. T. Wilson, J. R. Lee, “Structure of Polystyrene at the Interface with Various Liquids”, Macromolecules 37, 7742-7746 (2004).
    [51] A. Horinouchi, N. L. Yamada, K. Tanaka, “Aggregation States of Polystyrene at Nonsolvent Interfaces”, Langmuir 30, 6565-6570 (2014).
    [52] D. T. Wong, C. Wang, J. A. Pople, Ni. P. Balsara, “Effect of Nonsolvent Exposure on Morphology of Mesoporous Semicrystalline Block Copolymer Films”, Macromolecules 46, 4411-4417 (2013).
    [53] Y. Alhassan, N. Kumar, I.M. Bugaje, H.S. Pali, P. Kathkar, “Co-solvents transesterification of cotton seed oil into biodiesel: Effects of reaction conditions on quality of fatty acids methyl esters”, Energy Conversion and Management 84, 640-648 (2014).
    [54] T. S. Seeger, F. C. Rosa, C. A. Bizzi, V. L. Dressler, E. M.M. Flores, F. A. Duarte, “Feasibility of dispersive liquid–liquid microextraction for extraction and preconcentration of Cu and Fe in red and white wine and determination by flame atomic absorption spectrometry”, Spectrochimica Acta Part B 105, 136-140 (2015).
    [55] K. Sun, Y. Xia, J. Ouyang, “Improvement in the photovoltaic efficiency of polymer solar cells by treating the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) buffer layerwithco-solvents of hydrophilic organic solvents and hydrophobic 1,2-dichlorobenzene”, Solar Energy Materials & Solar Cells 97, 89-96 (2012).
    [56] T. Sasaki, M. Tanaka, T. Takahashi, “Fourier transform infra- red study on the structure of freeze-dried atactic polystyrene from dilute solutions”, Polymer 38, 18 (1997).

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE