簡易檢索 / 詳目顯示

研究生: 蘇筱婷
Su, Hsiao-ting
論文名稱: 高級氧化法處理實驗室高濃度有機廢液與酚之研究
Study on the treatment of high concentration laboratory organic wastewater and phenol by advanced oxidation processes
指導教授: 黃耀輝
Huang, Yao-Hui
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 140
中文關鍵詞: 草酸鐵錯合物高級氧化法電-Fenton光-Fenton光電-Fenton
外文關鍵詞: Fe3+-oxalato complexes, Photoelectro-Fenton, Photo-Fenton, Advanced oxidation processes, Electro-Fenton
相關次數: 點閱:144下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內校園實驗室廢棄物年產生量約為兩、三百噸以上,為了協助成功大學環境資源研究管理中心處理其所收集之全國綜合實驗室廢液,本研究以不同物化技術進行處理,其處理效果為:電-Fenton法 (EF-Fere法)>Fenton法>混凝沈澱法,表示電-Fenton法為現階段最適用於去除廢液中高濃度有機物。為使電-Fenton法發揮作用達其較佳處理效果,本研究針對進料水樣(混凝前),改變不同(亞)鐵加藥量,結果發現最佳鐵加藥量為4g-Fe/L,COD去除率可達約九成。推測由於其水樣中Cl-含量太高,導致Cl-與廢水中有機物爭相與高氧化能力的‧OH反應,使得原先預期‧OH會攻擊有機物竟而轉與氯離子進行反應,使得COD仍有10%的殘留。
    接著為進一步深入探討最適鐵加藥量,本研究設計了多套光、電系統,針對三價鐵鹽進行鐵還原實驗,找出不同的光源、電源系統中適用於將三價鐵還原成二價鐵的條件。實驗所得到的最適系統為四組直徑5cm不鏽鋼網陰極與直徑0.625cm DSA不溶性陽極的電極, 配合4支UV365nm光源的光電反應器,其最適鐵離子濃度為0.4g-Fe /L,其可在陰極電流密度為6.5A/m2、草酸存在下獲得最佳鐵還原效率。
    最後,為了驗證上述最佳系統與及其最適操作條件,本研究以phenol為研究對象,探討不同系列Fenton系統對2000 mg/L phenol的處理效果,結果發現處理效果最差的是Fenton,當系統額外加入光源及電源都可以提高其礦化效果,但處理效果最好的並不是上述的光電-Fenton系統,反而是光-Fenton系統,其礦化效果可達九成。為了提升其他系統的礦化效果,在原來的四小時反應時間結束後,均啟動光源系統進行後續兩小時的反應,研究發現其他的系統均明顯提高礦化效率,且草酸濃度皆明顯下降。推測其原因是以不同Fenton系統處理phenol時,反應中、後半部分生成大量的中間產物草酸,草酸進一步與三價鐵反應形成草酸鐵錯合物(Fe3+-oxalato complexes),此錯合物難以被‧OH分解,但因其具光反應性,故可加入UV光源進行光分解將其進一步礦化,而提升礦化效率。

    Advanced oxidation processes (AOPs) are based on radical reactions and offer the potential of a complete oxidation of water pollutants to water, carbon dioxide and mineral salts. This study applied AOPs to treat high organic concentration wastewater from Sustainable Environment Research Center, NCKU. The result indicated that almost 90% of COD could be removed by using Electro-Fenton process at 4g-Fe/L.
    In order to find the optimum Fe(III) dosage UV light was applied into Electro-Fenton system. The result shows that the suitable equipment for reducing Fe(III) is a system with four pairs of electrodes(φ=0.625 cm cylindrical Ti-DSA rod for anode ; φ=5 cm cylindrical SUS304 stainless steel grid for cathode), UV lights. It could obtain maximum ferrous production rate at 0. 4 g-Fe/L, 6.5A/m2 cathode current density and exist of oxalic acid.
    The experimental apparatus and working procedures are examined for wastewater treatment and phenol is used to be target compound. Treatment of high concentration phenol shows that almost 100% removal of phenol and about 91% removal of total organic carbon (TOC) are obtained for Photo-Fenton process. The presence of persistent oxalic acid in Fenton and Electro-Fenton react with Fe3+ to form Fe3+-oxalato complexes, which are slowly destroyed by ‧OH. These complexes are photo-active to be efficiently photodecomposed by photo-Fenton and photoelectro-Fenton processes and also found to be successful mineralization.

    目錄 中文摘要………………………………………………..………..……I 英文摘要……………………………………………………….…….III 圖目錄…………………………………………………….……..…...X 表目錄…………………………………………………….……....XVII 第一章 ………………………………………………………………1 1.1研究源起……………………………………………………...1 1.2研究目的………………………………………………………1 第二章 文獻回顧……………………………………………………3 2.1高級氧化程序………………………………………………….3 2.2氫氧自由基…………………………………………………….6 2.3 Fenton法之反應原理……………………………………….7 2.4應用Fenton法之相關研究……………………………….……9 2.5電解氧化法…………………………………………….……..11 2.5.1直接電解氧化法………………………………….……11 2.5.2間接電解氧化法…………………………………………11 2.6Advance electrochemical oxidation processes(AEOPs).13 2.6.1AEOPs簡述………………………………..……………..13 2.6.2AEOPs分類………………….……………………………13 2.6.3應用AEOPs法之相關研究………...….………………...16 2.7UV/H2O2法……………………………….…………………20 2.7.1 UV/H2O2法原理……………………..…………………20 2.7.2 UV/H2O2法之優缺點……….………………………….20 2.8光-Fenton法……………..……………………….23 2.8.1光-Fenton法原理..………………………………23 2.8.2草酸離子影響…………………………………………..23 2.8.3光-Fenton法優點………………………………….28 2.8.4應用光-Fenton法之相關研究…………………………28 2.9光電-Fenton 法………………..……………..32 2.9.1光電-Fenton 法原理…………………………….32 2.9.2光電-Fenton 法應用………………………………32 第三章 實驗設備與方法………………………………..……..……35 3.1實驗架構………………………………………………………35 3.1.1電-Fenton法處理綜合實驗室廢液………….…….35 3.1.2不同Fenton系統處理自行配製之phenol溶…………….………………………………….……..36 3.2實驗裝置…………………………….………………………..37 3.2.1提供電源系統 (平板式電極)……………………………37 3.2.2提供電源系統 (圓柱狀電極)……………………………39 3.2.3提供光源系統…………………………………………….42 3.2.4同時提供光源與電源系統……………………………….44 3.3檢測設備及操作儀器……………………………………….46 3.4實驗藥品………………………………………………………48 3.5分析檢測方法…………………………………………………53 3.5.1COD檢測分析…………………………………………..53 3.5.2亞鐵濃度測定…………………………………………..54 3.5.3過氧化氫濃度測定……………………………………….56 3.5.4HPLC檢測:phenol濃度及其中間產物……………….58 3.5.5電-Fenton法處理綜合實驗室廢液………………60 3.5.6鐵還原實驗……………………………………………..61 3.5.7不同Fenton系統處理phenol溶液…………………….62 第四章 結果與討論……………………………………………63 4.1電-Fenton法(EF-Fere法)處理綜合實驗室廢液……………63 4.1.1第一次採樣……………………………………………….64 4.1.2第二次採樣……………………………………………..68 4.1.3鐵還原實驗設計…………………………………………79 4.1.4提供電源系統……………………………………………80 4.1.5提供光源系統……………………………………………96 4.1.6同時提供光源與電源系統 …………………………...100 4.2不同Fenton系統處理phenol溶液………………………….104 4.2.1不同Fenton系統處理phenol溶液之實驗設計………….……………………………………………….104 4.2.2 H2O2理論加藥量…………………………………….104 4.2.3phenol降解之中間產物………….……………..106 4.2.4AOPs法處理phenol……………………………..112 第五章 結論與建議…………………………………….….125 5.1結論……………………………………………….125 5.2建議………………….……………………….…..130 附錄A………………………………………………………139  

    參考文獻
    Altin, A., 2008. An alternative type of photoelectro-Fenton process for the treatment of landfill leachate. Separation and Purification Technology 61, 391-397.
    Baker, J.R., Milke, M.W., Mihelcic, J.R., 1999. Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals. Water Research 33, 327-334.
    Balmer, M.E., Sulzberger, B., 1999. Atrazine Degradation in Irradiated Iron/Oxalate Systems:Effects of pH and Oxalate. Environmental Science & Technology 33, 2418-2424.
    Bauer, R., Waldner, G., Fallmann, H., Hager, S., Klare, M., Krutzler, T., Malato, S., Maletzky, P., 1999. The photo-fenton reaction and the TiO2/UV process for waste water treatment - novel developments. Catalysis Today 53, 131-144.
    Baxendale, J.H., Wilson, J.A., 1957. The photolysis of hydrogen peroxide at high light intensities. Transactions of the Faraday Society 53.
    Brillas, E., Boye, B., Sirés, I., Garrido, J.A., Rodríguez, R.M., Arias, C., Cabot, P.-L., Comninellis, C., 2004. Electrochemical destruction of chlorophenoxy herbicides by anodic oxidation and electro-Fenton using a boron-doped diamond electrode. Electrochimica Acta 49, 4487-4496.
    Brillas, E., Calpe, J.C., Casado, J., 2000. Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Research 34, 2253-2262.
    Brillas, E., Casado, J., 2002. Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere 47, 241-248.
    Brillas, E., Mur, E., Sauleda, R., Sànchez, L., Peral, J., Domènech, X., Casado, J., 1998. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental 16, 31-42.
    Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. (Eds.), 1987. Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (‧OH/‧O-) in Aqueous Solution.
    Chou, S., Huang, Y.-H., Lee, S.-N., Huang, G.-H., Huang, C., 1999. Treatment of high strength hexamine-containing wastewater by electro-Fenton method. Water Research 33, 751-759.
    Christensen, H., Sehested, K., Corfitzen, H., 1982. Reactions of hydroxyl radicals with hydrogen peroxide at ambient and elevated temperatures. The Journal of Physical Chemistry 86, 1588-1590.
    Daneshvar, N., Aber, S., Vatanpour, V., Rasoulifard, M.H., 2008. Electro-Fenton treatment of dye solution containing Orange II: Influence of operational parameters. Journal of Electroanalytical Chemistry 615, 165-174.
    Derbalah, A.S., Nakatani, N., Sakugawa, H., 2004. Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere 57, 635-644.
    Esplugas, S., Giménez, J., Contreras, S., Pascual, E., Rodríguez, M., 2002. Comparison of different advanced oxidation processes for phenol degradation. Water Research 36, 1034-1042.
    Fockedey, E., Van Lierde, A., 2002. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes. Water Research 36, 4169-4175.
    Gau, S.H., Chang, F.S., 1996. Improved fenton method to remove recalcitrant organics in landfill leachate. Water Science and Technology 34, 455-462.
    Graedel, T.E., Mandich, M.L., Weschler, C.J., 1986. Kinetic Model Studies of Atmospheric Droplet Chemistry 2. Homogeneous Transition Metal Chemistry in Raindrops. J. Geophys. Res. 91.
    Hartwick, T.J., 1954. The Rate Constant of the Reaction between Hydrogen Peroxide and Ferrous Ions. The Journal of Chemical Physics 22, 575-577.
    Hislop, K.A., Bolton, J.R., 1999. The Photochemical Generation of Hydroxyl Radicals in the UV-vis/Ferrioxalate/H2O2 System. Environmental Science & Technology 33, 3119-3126.
    Huang, Y.-H., Chen, C.-C., Huang, G.-H., Chou, S.S., 2001. Comparison of a novel electro-Fenton method with Fenton's reagent in treating a highly contaminated wastewater. Water Sci. Technol. 43, 17-24.
    Jeong, J., Yoon, J., 2005. pH effect on OH radical production in photo/ferrioxalate system. Water Research 39, 2893-2900.
    Kang, N., Lee, D.S., Yoon, J., 2002a. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere 47, 915-924.
    Kang, S.-F., Liao, C.-H., Chen, M.-C., 2002b. Pre-oxidation and coagulation of textile wastewater by the Fenton process. Chemosphere 46, 923-928.
    Kavitha, V., Palanivelu, K., 2004. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55, 1235-1243.
    Lu, M.-C., Chen, J.-N., Chang, C.-P., 1997. Effect of inorganic ions on the oxidation of dichlorvos insecticide with Fenton's reagent. Chemosphere 35, 2285-2293.
    Makgae, M.E., Klink, M.J., Crouch, A.M., 2008. Performance of sol-gel Titanium Mixed Metal Oxide electrodes for electro-catalytic oxidation of phenol. Applied Catalysis B: Environmental 84, 659-666.
    Mohey El-Dein, A., Libra, J.A., Wiesmann, U., 2003. Mechanism and kinetic model for the decolorization of the azo dye Reactive Black 5 by hydrogen peroxide and UV radiation. Chemosphere 52, 1069-1077.
    Mulazzani, Q.G., D'Angelantonio, M., Venturi, M., Hoffman, M.Z., Rodgers, M.A.J., 1986. Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. Methylviologen as a mechanistic probe. The Journal of Physical Chemistry 90, 5347-5352.
    Parsons, S., 2004. Advanced oxidation processes for water and wastewater treatment. IWA London.
    Pignatello, J.J., Oliveros, E., Mackay, A., 2006. Advanced Oxidation Processes for Organic
    Contaminant Destruction Based on the Fenton
    Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology 36, 1–84.
    Pimentel, M., Oturan, N., Dezotti, M., Oturan, M.A., 2008. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Applied Catalysis B: Environmental 83, 140-149.
    Skoumal, M., Rodriguez, R.M., Cabot, P.L., Centellas, F., Garrido, J.A., Arias, C., Brillas, E., 2009. Electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton degradation of the drug ibuprofen in acid aqueous medium using platinum and boron-doped diamond anodes. Electrochimica Acta 54, 2077-2085.
    Suryaman, D., Hasegawa, K., Kagaya, S., 2006. Combined biological and photocatalytic treatment for the mineralization of phenol in water. Chemosphere 65, 2502-2506.
    Thiruvenkatachari, R., Kwon, T.O., Jun, J.C., Balaji, S., Matheswaran, M., Moon, I.S., 2007. Application of several advanced oxidation processes for the destruction of terephthalic acid (TPA). Journal of Hazardous Materials 142, 308-314.
    Ventura, A., Jacquet, G., Bermond, A., Camel, V., 2002. Electrochemical generation of the Fenton's reagent: application to atrazine degradation. Water Research 36, 3517-3522.
    Vogelpohl, A., 2007. Applications of AOPs in wastewater treatment. Water Science and Technology 55, 207-211.
    Zepp, R.G., Faust, B.C., Hoigne, J., 1992. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction Environmental Science and Technology 26, 313-319.
    Zuo, Y., Hoigne, J., 1992. Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environmental Science & Technology 26, 1014-1022.
    王淑娟, 2006. 液相光催化反應之氫氧自由基生成量測-以甲醇為自由基捕捉劑. 國立高雄第一科技大學環境與安全衛生工程系碩士論文.
    張博荀, 2004. H2O2/Fe2+化學氧化法處理反應性染料 - Black B之研究. 國立成功大學化學工程研究所碩士論文.
    曾迪華, 莊連春, 郭家倫, 楊志堅, 1995. UV/H2O2氧化程序於水處理之應用. 工業污染防治季刊 14.
    黃慶淵, 2004. 以Photo-Fenton程序處理實驗室有機廢液. 國立屏東科技大學環境工程與科學系碩士論文.
    謝長原, 2002. 電解催化氧化氯酚之研究. 國立成功大學環境工程研究所碩士論文

    下載圖示 校內:2011-08-05公開
    校外:2011-08-05公開
    QR CODE