簡易檢索 / 詳目顯示

研究生: 羅家鈞
Lo, Chia-Chun
論文名稱: 開發結合電刺激與遠紅外線之慢性傷口癒合治療儀
A Synergic Electrical Stimulation and Far Infrared Radiation Device for Chronic Wound
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 60
中文關鍵詞: 傷口癒合電刺激紅外線刺激
外文關鍵詞: wound healing, electrical stimulation, infrared, chronic wound
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性傷口係指伴隨著慢性疾病出現的無法按照預期時間癒合之傷口疾病,其癒合時間通常長達四週以上,例如糖尿病足潰瘍、壓瘡等。根據美國國家衛生研究院的報告,每年用於治療慢性傷口的花費要將近10億美金。目前常見針對慢性傷口的物理性治療包括光療(Light emission)、力學刺激、溫度治療。在研究文獻中已有不少團隊證實電刺激對於傷口照護有正面的效果,而市面上卻鮮有利用電刺激治療效果的照護設備,所以衍生出結合電刺激與紅外線的慢性傷口照護儀。
    此研究中實驗組分別為對照組(僅使用3M透氣敷料)、電刺激組、紅外線刺激組、電刺激結合紅外線組。在材料特性的試驗中,我們證明了所使用的布料不僅具有生物相容性同時也具有釋放遠紅外線(2-22μm)的能力;在細胞實驗方面,我們證實了我們所使用的電刺激條件(ABW 50)具有促進細胞遷徙的能力,在將紅外線與電刺激相結合後也一樣具有促進的效果。在動物實驗中,我們將大鼠分為兩組不同的傷口模型(急性傷口16隻,各條件4隻;慢性傷口4隻,各條件2隻):大鼠切割傷口模型(急性傷口)與糖尿病鼠傷口模型(慢性傷口)。慢性傷口模型是透過連續餵食3週的60%高脂飼料(High Fat Diets, HFD)並於兩周內每週分別注射35 mg/kg低劑量的鏈脲佐菌素(Streptozotocin, STZ)誘導而成。在實驗期間每天更換敷料並清潔傷口,每兩天對傷口進行拍照以記錄癒合狀況,於第九天時將大鼠犧牲並取下傷口組織進行後續的病理切片分析。為了觀察組織結構以及傷口再上皮化的情形,蘇木精-伊紅染色(Hematoxylin and Eosin stain, H&E stain)將投入於該研究中使用。實驗結果發現,紅外線結合電刺激的治療模式應用於急性傷口模型上具有非常好的治療效果,其上皮化的程度與對照組相比有顯著性差異;而在慢性傷口模型上,紅外線結合電刺激的組別對於傷口的癒合雖然並沒有出現統計上的差異,但是仍然具有加速癒合的趨勢。我們認為紅外線結合電刺激的照護方式在未來是一個值得繼續研究與探討的方向。

    Chronic wounds are prevalent in certain group of patients and cause billions dollars annually to treat them. This study developed a synergic electrical stimulation and far infrared (FIR) device for chronic wound healing. The electrical stimulation condition was selected by in vitro test and the cloth produced FIR was selected by emissivity. So far, although some literature showed that electrical stimulation and infrared rays respectively could promote wound healing, there was almost no research that combined these two, and there is no electrical stimulation device for chronic wound treatment in the market This study developed a special device that combined both electrical stimulation and FIR for promoting chronic wound healing. In in vitro study, cells without any treatment were as the control group, the experiment groups were treated with electrical stimulation, FIR, and electrical stimulation combined with IR. In in vitro test results, the IR cloth have good cell compatibility and the condition of electrical stimulation we used showed could promote NIH-3T3 cells migration. In in vivo test, an acute wound group (normal rat wound), and a chronic wound group (diabetic rat wound) were used. Three 1-cm full thickness wounds will cut on the back of each rat and each wound were covered 3M Tegaderm. According to different treatments, the rats in each wound model were divided into four groups, each group had four rats. The wound size was measured every two days, and H&E staining was used to observe the growth of epithelial tissue. The results show that combining FIR and electric stimulation could accelerate wound healing in both acute and chronic wounds. It is believed such synergic electrical stimulation treatment combined with IR can be used in clinic in the future to treat chronic and severe wounds in an effective way.

    中文摘要 I ABSTRACT III 誌謝 V TABLE OF CONTENTS VI LIST OF TABLES IX LIST OF FIGURES X CHAPTER 1: INTRODUCTION 1 1.1CHRONIC WOUND AND HEALING DEVICE 1 1.2 LIGHT THERAPY 3 1.3 MECHANICAL STIMULATION THERAPY 5 1.3.1 WHIRLPOOL 5 1.3.2 ULTRASOUND 5 1.3.3 NEGATIVE PRESSURE THERAPY 5 1.3.4 HYPERBARIC OXYGEN THERAPY 6 1.3.5 ELECTRICAL STIMULATION 6 1.4 MOTIVATION AND AIMS OF THE RESEARCH 10 CHAPTER 2: MATERIALS AND METHODS 11 2.1 FLOW CHART OF EXPERIMENT 11 2.2 EXPERIMENTAL MATERIALS 12 2.3 EXPERIMENTAL EQUIPMENT 13 2.4 SELF-DESIGNED ELECTRICAL STIMULATION CHAMBER FOR IN VITRO STUDY 14 2.5 CHARACTERIZATION OF STIMULATION SYSTEM 15 2.5.1 ELECTRICAL CHARACTERISTICS MEASUREMENT 15 2.5.2 IR MEASUREMENT 16 2.6 IN VITRO TESTS 17 2.6.1 CELL CULTURE 17 2.6.2 CYTOTOXICITY ASSAY 17 2.6.3 CELL MIGRATION AND PROLIFERATION 18 2.7 IN VIVO TESTS 21 2.7.1 ANIMAL SOURCE AND BREEDING 21 2.7.2 ACUTE WOUND MODEL 21 2.7.3 CHRONIC WOUND MODEL 22 CHAPTER 3: RESULTS AND DISCUSSION 28 3.1 CHARACTERIZATION OF STIMULATION SYSTEM 28 3.1.1 ELECTRICAL CHARACTERISTICS MEASUREMENT 28 3.1.2 IR MEASUREMENT 30 3.2 IN VITRO TEST 30 3.2.1 CYTOTOXICITY OF IR CLOTH 30 3.2.2 CELL MIGRATION TEST 31 3.2.3 CELL PROLIFERATION TEST 36 3.3 IN VIVO TEST 39 3.3.1 ACUTE WOUND MODEL 39 3.3.2 CHRONIC WOUND MODEL 45 CHAPTER 4: CONCLUSION 52 CHAPTER 5: FUTURE WORKS 54 REFERENCES 55

    1. Schreml, S. et al. Oxygen in acute and chronic wound healing. Br. J. Dermatol. 163, 257–268 (2010).
    2. Frykberg, R. G. &Banks, J. Challenges in the Treatment of Chronic Wounds. Adv. Wound Care 4, 560–582 (2015).
    3. Wang, Y., Armato, U. &Wu, J. Targeting Tunable Physical Properties of Materials for Chronic Wound Care. Front. Bioeng. Biotechnol. 8, 1–14 (2020).
    4. Han, G. &Ceilley, R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 34, 599–610 (2017).
    5. Sen, C. K. et al. Human skin wounds: A major and snowballing threat to public health and the economy: PERSPECTIVE ARTICLE. Wound Repair Regen. 17, 763–771 (2009).
    6. Hamblin, M. R. &Demidova, T. N. Mechanisms of low level light therapy. Mech. Low-Light Ther. 6140, 614001 (2006).
    7. Hess, C. L., Howard, M. A. &Attinger, C. E. A review of mechanical adjuncts in wound healing: Hydrotherapy, ultrasound, negative pressure therapy, hyperbaric oxygen, and electrostimulation. Ann. Plast. Surg. 51, 210–218 (2003).
    8. Whitney, J. A. D., Salvadalena, G., Higa, L. &Mich, M. Treatment of pressure ulcers with noncontact normothermic wound therapy: Healing and warming effects. J. Wound, Ostomy Cont. Nurs. 28, 244–252 (2001).
    9. Haertel, B., vonWoedtke, T., Weltmann, K. D. &Lindequist, U. Non-thermal atmospheric-pressure plasma possible application in wound healing. Biomol. Ther. 22, 477–490 (2014).
    10. Anders, J. J., Lanzafame, R. J. &Arany, P. R. Low-level light/laser therapy versus photobiomodulation therapy. Photomed. Laser Surg. 33, 183–184 (2015).
    11. Tsai, S. R. &Hamblin, M. R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B Biol. 170, 197–207 (2017).
    12. Toyokawa, H. et al. Promotive effects of far-infrared ray on full-thickness skin wound healing in rats. Exp. Biol. Med. 228, 724–729 (2003).
    13. Chiu, H. W., Chen, C. H., Chang, J. N., Chen, C. H. &Hsu, Y. H. Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. J. Mol. Med. 94, 809–819 (2016).
    14. Chiu, H. W., Chen, C. H., Chen, Y. J. &Hsu, Y. H. Far-infrared suppresses skin photoaging in ultraviolet B-exposed fibroblasts and hairless mice. PLoS One 12, 1–15 (2017).
    15. Chen, C. H. et al. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice. Sci. Rep. 7, 1–14 (2017).
    16. Hsu, Y. H., Lin, Y. F., Chen, C. H., Chiu, Y. J. &Chiu, H. W. Far infrared promotes wound healing through activation of Notch1 signaling. J. Mol. Med. 95, 1203–1213 (2017).
    17. Niederhuber, S. S., Stribley, R. F. &Koepke, G. H. Reduction of skin bacterial load with use of the therapeutic whirlpool. Phys. Ther. 55, 482–486 (1975).
    18. Tao, H., Butler, J. P. &Luttrell, T. The role of whirlpool in wound care. J. Am. Coll. Clin. Wound Spec. 4, 7–12 (2012).
    19. Ennis, W. J., Lee, C., Gellada, K., Corbiere, T. F. &Koh, T. J. Advanced technologies to improve wound healing: Electrical stimulation, vibration therapy, and ultrasound-what is the evidence? Plast. Reconstr. Surg. 138, 94S-104S (2016).
    20. Samaneh, R., Ali, Y., Mostafa, J., Mahmud, N. A. &Zohre, R. Ultrasound therapy for wound healing: A review of current techniques and mechanisms of action. Biosci. Biotechnol. Res. Asia 12, 217–223 (2015).
    21. Cullum, N. &Liu, Z. Therapeutic ultrasound for venous leg ulcers. Cochrane Database Syst. Rev. 2017, (2017).
    22. Huang, C., Leavitt, T., Bayer, L. R. &Orgill, D. P. Effect of negative pressure wound therapy on wound healing. Curr. Probl. Surg. 51, 301–331 (2014).
    23. Lam, G., Fontaine, R., Ross, F. L. &Chiu, E. S. Hyperbaric oxygen therapy: Exploring the clinical evidence. Adv. Ski. Wound Care 30, 181–190 (2017).
    24. BOYKIN, J.V. How hyperbaric oxygen therapy helps heal chronic wounds. Nursing2020 32, (2002).
    25. Ueno, T., Omi, T., Uchida, E., Yokota, H. &Kawana, S. Evaluation of hyperbaric oxygen therapy for chronic wounds. J. Nippon Med. Sch. 81, 4–11 (2014).
    26. Kranke, P. et al. Hyperbaric oxygen therapy for chronic wounds. Cochrane Database Syst. Rev. 2015, (2015).
    27. Zhao, M. et al. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442, 457–460 (2006).
    28. Weiss, D. S., Kirsner, R. &Eaglstein, W. H. Electrical Stimulation and Wound Healing. Arch. Dermatol. 126, 222–225 (1990).
    29. FOULDS, I. S. &BARKER, A. T. Human skin battery potentials and their possible role in wound healing. Br. J. Dermatol. 109, 515–522 (1983).
    30. Hunckler, J. &deMel, A. A current affair: Electrotherapy in wound healing. J. Multidiscip. Healthc. 10, 179–194 (2017).
    31. Reger, S. I., Hyodo, A., Negami, S., Kambic, H. E. &Sahgal, V. Experimental wound healing with electrical stimulation. Artif. Organs 23, 460–462 (1999).
    32. Feedar, J., Kloth, L. &Gentzkow, G. Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation. Phys. Ther. 72, 539 (1992).
    33. Anna, P., Taradaj, J. &Kucio, C. Using High-Voltage Electrical Stimulation in the Treatment of Recalcitrant Pressure Ulcers: Results of a Randomized, Controlled Clinical Study. Ostomy Wound Manag. 58, 30–44 (2012).
    34. Janković, A. &Binić, I. Frequency rhythmic electrical modulation system in the treatment of chronic painful leg ulcers. Arch. Dermatol. Res. 300, 377–383 (2008).
    35. Lawson, D. &Petrofsky, J. S. A randomized control study on the effect of biphasic electrical stimulation in a warm room on skin blood flow and healing rates in chronic wounds of patients with and without diabetes. Med. Sci. Monit. 13, 258–263 (2007).
    36. Ahmad, E. T. High-voltage pulsed galvanic stimulation: effect of treatment duration on healing of chronic pressure ulcers. Ann. Burns Fire Disasters 21, 124–8 (2008).
    37. Gürgen, S. G., Sayın, O., Çetin, F. &Tuç Yücel, A. Transcutaneous electrical nerve stimulation (TENS) accelerates cutaneous wound healing and inhibits pro-inflammatory cytokines. Inflammation 37, 775–784 (2014).
    38. Machado, A. F. P., Liebano, R. E., Furtado, F., Hochman, B. &Ferreira, L. M. Effect of High- and Low-Frequency Transcutaneous Electrical Nerve Stimulation on Angiogenesis and Myofibroblast Proliferation in Acute Excisional Wounds in Rat Skin. Adv. Skin Wound Care 29, 357–363 (2016).
    39. Mobini, S., Leppik, L. &Barker, J. H. Direct current electrical stimulation chamber for treating cells in vitro. Biotechniques 60, 95–98 (2016).
    40. Zhang, M., Lv, X. Y., Li, J., Xu, Z. G. &Chen, L. The characterization of high-fat diet and multiple low-dose streptozotocin induced type 2 diabetes rat model. Exp. Diabetes Res. 2008, 704045 (2008).
    41. Huang, Y. &Yeh, M. 生物醫學工程學系 碩士論文 開發具有鎂離子的新型複合傷口敷料 : 含體內外測試. (2020).

    無法下載圖示 校內:2023-02-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE