簡易檢索 / 詳目顯示

研究生: 楊力權
Yang, Li-Chuan
論文名稱: 染料敏化太陽能電池二氧化鈦層電泳沉積製備之研究
Electrophoretic Deposition of TiO2 Layers for Dye-Sensitized Solar Cells
指導教授: 楊明長
Yang, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 108
中文關鍵詞: 染料敏化太陽能電池電泳沉積二氧化鈦層散射效應
外文關鍵詞: Dye-sensitized solar cells, EPD, TiO2 layers, scattering effect
相關次數: 點閱:64下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究以電泳沉積法製備染料敏化太陽能電池中的奈米二氧化鈦薄膜光電極,因為無添加黏著劑的優點,使整體薄膜具有奈米顆粒緊密堆積的結構。電泳沉積只需提供一足夠的電場,便可將奈米二氧化鈦顆粒沉積於導電基板上,再加上緊密堆積的結構,使得要達到同樣二氧化鈦薄膜比表面積只需要較小的體積,可利用此特性發展在精密微小製程上。
    本研究利用二次水熱法將商用二氧化鈦P25轉相成純銳態礦晶相(A20),此種純銳鈦礦晶相二氧化鈦顆粒在製備成染料敏化太陽能電池後,可有效的提升光電流密度,光電轉換效率可達到6.58%。為了提高光子注入量,選用三種大顆粒商用二氧化鈦顆粒(P25、A160、R400)分別混摻入A20二氧化鈦層內,藉著光散射效應激發出更多的電子量。若混摻重量比例控制在25%,結果顯示在膜厚為10μm下,混摻商用二氧化鈦A160的二氧化鈦層具有最高的電流密度15.2mA/cm2,光電轉換效率可達到8.29%。
    針對是否加入額外的光散射層、A160二氧化鈦占的重量比例、二氧化鈦層膜厚,進行一系列的最佳化測試,結果顯示在不加入散射層且膜厚為13μm下,重量比例為25%時,具有最佳光電轉換效率8.65%。
    搭配阻抗頻譜分析以及交流阻抗頻譜分析,分析結果顯示具大顆粒的二氧化鈦薄膜,因為有效的產生光散射效應減少電子平均傳遞路徑減少,使具有較短的電子傳遞時間,也有很高的電子收集效率,光電轉換效率可達到8.65%。

    關鍵字:染料敏化太陽能電池;電泳沉積;二氧化鈦層;散射效應

    Abstract
    By taking the advantage of the binder-free system, we use electrophoretic deposition (EPD) technique to prepare nanocrystalline TiO2 films, which had a closely packed structure, for dye-sensitized solar cells (DSSCs). EPD provided an adequate electrical field to deposit TiO2 particles on conductive substrate, resulting in a closely packed structure. By EPD method, TiO2 films could achieve a smaller volume with the same specific surface area with smaller volume. This characteristic can be developed on the procedure of micro-device.
    Secondary hydrothermal method was used to transform the phase of commercial TiO2 particles into pure anatase phase. The TiO2 particles of pure anatase phase could effectively enhance the photocurrent density of the dye-sensitized solar cells and its cell performance could achieve 6.58%. In order to enhance the injection amount of photons, three larger commercial TiO2 particles (P25, A160, R400) were added into TiO2 films with weight ratio 25% for a thickness of 10μm thickness. The results showed that the addition of A160 in TiO2 films gave the best current density, 15.2mA/cm2, and the cell performance could achieve 8.29%. A series of optimization tests, including the necessity of scattering layer in the TiO2 films, different weight ratio of A160 TiO2 particles in the film and different thickness of TiO2 films, were carried out. The result showed that TiO2 film of 13μm thickness without scattering layer at the with weight ratio of 25% gave the best cell performance of 8.65%.
    Intensity-modulated photocurrent spectroscopic and impedance analysis showed that the mixing TiO2 films had shorter electron transit time. The reason was that scattering effect shortened the electron transit distance. It resulted in good charge collection efficiency and cell performance.

    Key word: Dye-sensitized solar cells, EPD, TiO2 layers, scattering effect

    總 目 錄 摘要 ............................................................................................ I Abstract ........................................................................................... II 誌謝 .......................................................................................... III 本文目錄 .......................................................................................... VI 表目錄 ........................................................................................ IX 圖目錄 .......................................................................................... X 本文目錄 第一章 緒論 1 1-1前言 1 1-2 半導體 3 1-3太陽能電池 5 1-4 研究動機及目的 6 第二章 文獻回顧 7 2-1 染料敏化太陽能電池 7 2-1-1 工作原理 7 2-1-2 多孔性奈米二氧化鈦薄膜電極 10 2-1-3 染料敏化劑 13 2-1-4 電解質 17 2-1-5 相對電極 18 2-2 電泳沉積 19 2-2-1 電泳沉積之工作原理 20 2-2-2 懸浮液種類 22 2-2-3 粒子電荷來源 23 2-2-4膠體粒子分散 23 2-3 電泳沉積於染料敏化太陽能電池之應用 24 第三章 實驗方法與儀器原理介紹 26 3-1 實驗藥品 26 3-2實驗儀器設備 28 3-3二氧化鈦奈米顆粒漿料與鍍層的製備 29 3-3-1 水熱法合成二氧化鈦奈米顆粒 29 3-3-2 二氧化鈦奈米顆粒電泳液之製備 30 3-3-3 二氧化鈦奈米顆粒散射層漿料之製備 31 3-3-4 以電泳沉積法製備二氧化鈦穿透層薄膜 31 3-3-5以旋轉塗佈法製備二氧化鈦散射層薄膜 32 3-3-6 二氧化鈦薄膜之後處理 32 3-4 染料敏化太陽能電池之組裝 33 3-4-1 染料敏化劑之吸附 33 3-4-2 電解液之製備 33 3-4-3 相對電極之製備 33 3-4-4 染料敏化太陽能電池之組裝 33 3-5 染料敏化太陽能電池之電性測試 35 3-5-1 電流-電壓特性曲線之測量 35 3-5-2 IMPS以及IMVS測量 37 3-5-3交流阻抗頻譜(EIS) 39 3-6 材料分析與鑑定 41 3-6-1 X光繞射儀(XRD)分析 41 3-6-2 掃描式電子顯微鏡(SEM) 42 第四章 結果與討論 45 4-1 以商用與自製奈米二氧化鈦顆粒製備之電極 45 4-1-1 XRD分析 45 4-1-2 電池性能 47 4-1-3 IMPS分析 50 4-1-4 交流阻抗頻譜(EIS)分析 56 4-2 混摻大顆粒二氧化鈦對電池效率的影響 62 4-2-1 XRD分析 62 4-2-2 電極薄膜SEM分析 63 4-2-3 電池性能 65 4-2-4 交流阻抗頻譜(EIS)分析 67 4-3 增加光散射層對電池效率的影響 70 4-3-1電極薄膜SEM分析 71 4-3-2 電池性能 72 4-4 二氧化鈦層製備條件之最佳化 76 4-4-1 紫外光-可見光吸收光譜 77 4-4-2 電池性能 78 4-4-3 IMPS分析 81 4-4-4 IMVS分析 90 4-4-5 交流阻抗頻譜(EIS)分析 93 第五章 結論與建議 98 第六章 參考文獻 99 表目錄 表4- 1不同成份工作電極組裝成電池之交流阻抗頻譜分析結果經適套後所得到模擬元件的參數 60 表4- 2 不同成分工作電極之電池各項參數(Voc、Jsc、F.F.、η) 66 表4- 3不同成份工作電極組裝成電池之交流阻抗頻譜分析結果經適套後所得到模擬元件的參數。二 氧化鈦薄膜膜厚均為10μm 69 表4- 4 以A20製備穿透層之電池各項參數(Voc、Jsc、F.F.、η) 74 表4- 5 不同混摻比例二氧化鈦層之電池各項參數(Voc、Jsc、F.F.、η) 79 表4- 6 各混摻比例之最佳膜厚13μm二氧化鈦層並組裝成電池,在藍光下所測得之電子傳遞時間 88 表4- 7 各混摻比例之最佳膜厚13μm二氧化鈦層並組裝成電池,在紅光下所測得之電子傳遞時間 89 表4- 8 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池,在藍光與紅光下所測得之電子生存時間 92 表4- 9 各混摻比例之最佳膜厚13μm二氧化鈦層並組裝成電池之交流阻抗頻譜分析結果經適套後所 得到模擬元件的參數 96   圖目錄 第一章 圖1- 1各種化合物半導體的能帶結構圖……………………………..4 第二章 圖2-1 光伏打電池工作原理示意圖 8 圖2-2染料敏化太陽能電池工作原理示意圖 9 圖2- 3 板鈦礦晶相二氧化鈦工作電極和金紅石晶相二氧化鈦工作電極在相同膜厚下的比較 11 圖2- 4 板鈦礦晶像二氧化鈦工作電極和金紅石晶像二氧化鈦工作電極電子擴散係數(Dn)的比較 12 圖2- 5以釕金屬為中心的錯合物染料分子結構 14 圖2- 6染料分子與二氧化鈦薄膜鍵結方式 15 圖2- 7 N719與二氧化鈦表面形成bridging bidentate 15 圖2- 8金屬錯合物和有機染料的光電轉換效率發展圖 16 圖2- 9不同半徑大小陽離子所對應之光電壓及光電流 18 圖2- 10 電泳沉積和電解沉積示意圖 19 圖2- 11 帶電粒子陰極沉積示意圖 21 圖2- 12可溶性陽極之電泳沉積示意圖 22 第三章 圖3- 1 電泳沉積裝置示意圖 32 圖3- 2 染料敏化太陽能電池組裝流程圖 34 圖3- 3 染料敏化太陽能電池之光電轉換效率系統 36 圖3- 4 電流-電壓特性曲線圖 36 圖3- 5 (a)IMPS實驗光源照射及光電流在二氧化鈦薄膜上流動示意圖(b)入射光與光電流之相角差示意圖 38 圖3- 6典型IMPS應答圖形(fmin為應答中數值最負點之頻率) 39 圖3- 7染料敏化太陽能電池之等效電路圖 40 圖3- 8 染料敏化太陽能電池之交流阻抗圖譜 40 圖3- 9 X-光晶體繞射示意圖 42 圖3- 10電子束與試片表面交互作用之示意圖 44 第四章 圖4- 1 A20、P25之二氧化鈦顆粒XRD分析圖 46 圖4- 2 以A20與P25之工作電極且製備不同膜厚之電池於100mW/cm2、AM1.5G模擬太陽光下測試之應答曲線 48 圖4- 3 以A20與P25之工作電極組裝成電池後,從電池特性曲線中得到的各個電池參數(Voc、Jsc、F.F.、η)對應不同膜厚作圖 49 圖4- 4 以A20以及P25製備二氧化鈦薄膜並組裝成電池,進行IMPS測試的Nyquist結果圖,測試條件在短路環境下,以波長455nm的藍光LED為光源,強度設定為150W/m2,搭配光強度5%之震盪測試 52 圖4- 5 Trap-free以及Trap-limited傳遞模式示意圖[62] 53 圖4- 6 以A20以及P25製備二氧化鈦薄膜並組裝成電池,進行IMPS測試的Nyquist結果圖,測試條件在短路環境下,以波長625nm的紅光LED為光源,強度設定為100W/m2,搭配光強度5%之震盪測試 54 圖4- 7 以A20以及P25製備二氧化鈦薄膜並組裝成電池,測試條件在短路環境下,以波長455nm的藍光LED為光源,強度設定為150W/m2,搭配光強度5%之震盪量測IMPS之電子傳遞時間對應不同膜厚之結果圖 55 圖4- 8 以A20以及P25製備二氧化鈦薄膜並組裝成電池,測試條件在短路環境下,以波長625nm的紅光LED為光源,強度設定為100W/m2,搭配光強度5%之震盪量測IMPS之電子傳遞時間對應不同膜厚之結果圖 55 圖4- 9 不同成份工作電極組裝成電池,控制開環電壓條件下,振幅為10mV,光強度為100mW/cm2、AM1.5G模擬太陽光進行交流阻抗測試結果(a)圖形標記為測試結果,實線為配合模擬等效電路、適套後結果(b)等效模擬電路元件圖 59 圖4- 10 以A20以及P25製備二氧化鈦薄膜於不同膜厚下之(a)電子收集效率(b)電子擴散長度 61 圖4- 11 A160、R400商用二氧化鈦XRD分析圖 63 圖4- 12 混摻不同商用二氧化鈦顆粒於A20且沉積於FTO導電玻璃之表面SEM圖。(a)、(b)為混摻P25於A20中;(c)、(d)為混摻A160於A20中;(e)、(f)為混摻R400於A20中 64 圖4- 13 混摻不同成分工作電極之電池於100mW/cm2、AM1.5G模擬太陽光下測試之應答曲線 66 圖4- 14 不同成份工作電極組裝成電池,控制開環電壓條件下,振幅為10mV,光強度為100mW/cm2、AM1.5G模擬太陽光進行交流阻抗測試結果(a)圖形標記為測試結果,實線為配合模擬等效電路、適套後結果(b)等效模擬電路元件圖 68 圖4- 15散射層之散射效應示意圖[70] 71 圖4- 16 混摻不同重量比例A160於A20內沉積於FTO導電玻璃之表面SEM圖。A160/A20重量比:(a)1/2;(b)1/3;(c)1/4;(d)1/5。 72 圖4- 17 以A20製備穿透層(TL)組裝成電池於100mW/cm2、AM1.5G模擬太陽光下測試之應答曲線。散射層(SL)重量比例為R400/P25=1/3。 74 圖4- 18從電池特性曲線得到的各個電池參數對應比例作圖 75 圖4- 19各混摻比例二氧化鈦層之擴散反射比較 77 圖4- 20 不同混摻比例之最佳膜厚13μm組裝成電池於100mW/cm2、AM1.5G模擬太陽光下測試之應答曲線 79 圖4- 21 將不同混摻比例之二氧化鈦層組裝成電池後,從電池特性曲線中得到的各個電池參數(Voc、Jsc、F.F.、η)對應不同膜厚作圖 80 圖4- 22 混摻比例為A160/A20=1/2製備二氧化鈦層並組裝成電池,進行IMPS測試的Nyquist結果圖,測試條件在短路環境下,以波長455nm的藍光LED與波長625nm的紅光為光源,強度設定為藍光150W/m2,紅光100W/m2,搭配光強度5%之震盪測試 83 圖4- 23 混摻比例為A160/A20=1/3製備二氧化鈦層並組裝成電池,進行IMPS測試的Nyquist結果圖,測試條件在短路環境下,以波長455nm的藍光LED與波長625nm的紅光為光源,強度設定為藍光150W/m2,紅光100W/m2,搭配光強度5%之震盪測試 84 圖4- 24 混摻比例為A160/A20=1/4製備二氧化鈦層並組裝成電池,進行IMPS測試的Nyquist結果圖,測試條件在短路環境下,以波長455nm的藍光LED與波長625nm的紅光為光源,強度設定為藍光150W/m2,紅光100W/m2,搭配光強度5%之震盪測試 85 圖4- 25 混摻比例為A160/A20=1/5製備二氧化鈦層並組裝成電池,進行IMPS測試的Nyquist結果圖,測試條件在短路環境下,以波長455nm的藍光LED與波長625nm的紅光為光源,強度設定為藍光150W/m2,紅光100W/m2,搭配光強度5%之震盪測試 86 圖4- 26 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池,進行IMPS測量,測試條件在短路環境下,以波長455nm的藍光LED為光源,強度設定為150W/m2,搭配光強度5%之震盪測試 87 圖4- 27 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池,進行IMPS測量,測試條件在短路環境下,以波長455nm的藍光LED為光源,強度設定為150W/m2,搭配光強度5%之震盪測試 87 圖4- 28 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池,測試條件在短路環境下,以波長455nm的藍光LED為光源,強度設定為150W/m2,搭配光強度5%之震盪量測IMPS之電子傳遞時間對應不同混摻比例之結果圖 88 圖4- 29 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池,測試條件在短路環境下,以波長625nm的紅光LED為光源,強度設定為100W/m2,搭配光強度5%之震盪量測IMPS之電子傳遞時間對應不同混摻比例之結果圖 89 圖4- 30 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池,進行IMVS測量,測試條件在開路環境下,以波長455nm的藍光LED為光源,強度設定為150W/m2,搭配光強度5%之震盪測試 91 圖4- 31 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池,進行IMVS測量,測試條件在開路環境下,以波長455nm的藍光LED為光源,強度設定為150W/m2,搭配光強度5%之震盪測試 91 圖4- 32 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池,測試條件在開路環境下,以波長455nm的藍光LED與波長625nm的紅光為光源,強度設定為藍光150W/m2、紅光100W/m2,搭配光強度5%之震盪量測IMVS之電子生存時間對應不同混摻比例之結果圖 92 圖4- 33 不同成份工作電極組裝成電池,控制開環電壓條件下,振幅為10mV,光強度為100mW/cm2、AM1.5G模擬太陽光進行交流阻抗測試結果(a)圖形標記為測試結果,實線為配合模擬等效電路、適套後結果(b)等效模擬電路元件圖。 95 圖4- 34 各混摻比例之最佳膜厚二氧化鈦層並組裝成電池之(a)電子收集效率(b)電子擴散長度 97

    [1] 楊素華, 蔡泰成, [太陽能電池], 科學發展月刊, (2005) 203.145.193.110.
    [2] M. Grätzel, [Photoelectrochemical cells], Nature, 414 (2001).
    [3] M. Grätzel, B. O'Regan, [a low-cost, high eefficiency solar cell based on dye sensitized colloidal TiO2 films], Nature, 353 (1991) 737.
    [4] M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Grätzel, [Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells], J. Am. Chem. Soc, 123 (2001) 1613-1624.
    [5] Chia-Yuan Chen, Cevey-ha Ngoc-le, Mingkui Wang, Shaik M. Zakeeruddin, Jheng-Ying Li, Jean-David Decoppet, Michael Grätzel, Jia-Hung Tsai, Nuttapol Pootrakulchote, Carole Grätzel, Chun-Guey Wu, L. Alibabaei, [Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells], ACS Nano, 3 (2009) 3103–3109.
    [6] A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Gratzel, [Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency], Science, 334 (2011) 629-634.
    [7] A. FUJISHIMA, K. HONDA, [Electrochemical Photolysis of Water at a Semiconductor Electrode], Nature, 238 (1972) 37-38.
    [8] Y.-J. Liou, P.-T. Hsiao, L.-C. Chen, Y.-Y. Chu, H. Teng, [Structure and Electron-Conducting Ability of TiO2Films from Electrophoretic Deposition and Paste-Coating for Dye-Sensitized Solar Cells], The Journal of Physical Chemistry C, 115 (2011) 25580-25589.
    [9] C. Longo, M.-A.D. Paoli, [Dye-Sensitized Solar Cells A Successful Combination of Materials], J. Braz. Chem. Soc., 14 (2003) 889-901.
    [10] D. Cahen, G. Hodes, M. Grätzel, J.F.o. Guillemoles, I. Riess, [Nature of Photovoltaic Action in Dye-Sensitized Solar Cells], J. Phys. Chem., 104 (2000) 2053-2059.
    [11] C.A. Kelly, G.J. Meyer, [Excited state processes at sensitized nanocrystalline thin film semiconductor interfaces], COORDINATION CHEMISTRY REVIEWS, (2001) 295–315.
    [12] K. Kalyanasundaram, M. Grätzel, [Applications of functionalized transition metal complexes in photonic and optoelectronic devices], COORDINATION CHEMISTRY REVIEWS, (1998) 347–414.
    [13] A.C. Fisher, L.M. Peter, E.A. Ponomarev, A.B. Walker, K.G.U. Wijayantha, [Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized], J. Phys. Chem. B, 104 (2000) 949-958.
    [14] N. Papageorgiou, C. Barbe, M. Grätzel, [Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films], J. Phys. Chem. B, 102 (1998) 4156-4164.
    [15] N.-G. Park, J.v.d. Lagemaat, A.J. Frank, [Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells], J. Phys. Chem. B, 104 (2000) 8989-8994.
    [16] C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Grätzel, [Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications], J. Am. Ceram. Soc., 80 (1997) 3157-3171.
    [17] S.D. Burnside, V. Shklover, C. Barbe, P. Comte, F. Arendse, K. Brooks, M. Grätzel, [Self-Organization of TiO2 Nanoparticles in Thin Films], Chem. Mater., 10 (1998) 2419-2425.
    [18] G.P. Smestad, M. Grätzel, [Demonstrating Electron Transfer and Nanotechnology: A Natural Dye–Sensitized Nanocrystalline Energy Converter], Journal of Chemical Education, 75 (1998).
    [19] K.E. Lee, M.A. Gomez, S. Elouatik, G.P. Demopoulos, [Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase TiO2Films for DSSC Applications Using Vibrational Spectroscopy and Confocal Raman Imaging], Langmuir, 26 (2010) 9575-9583.
    [20] M.K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Grätzel, [Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell], J. Phys. Chem. B, 107 (2003) 8981-8987.
    [21] J. Li, W. Wu, J. Yang, J. Tang, Y. Long, J. Hua, [Effect of chenodeoxycholic acid (CDCA) additive on phenothiazine dyes sensitized photovoltaic performance], Science China Chemistry, 54 (2011) 699-706.
    [22] J.H. Yum, S.J. Moon, R. Humphry-Baker, P. Walter, T. Geiger, F. Nuesch, M. Gratzel, M.D. Nazeeruddin, [Effect of coadsorbent on the photovoltaic performance of squaraine sensitized nanocrystalline solar cells], Nanotechnology, 19 (2008) 424005.
    [23] Y. Seo, J.H. Kim, [Rapid dye adsorption for dye-sensitized solar cells using a simple ultrasonication method], Journal of Industrial and Engineering Chemistry, 19 (2013) 488-492.
    [24] F. Hirose, M. Shikaku, Y. Kimura, M. Niwano, [IR Study on N719 Dye Adsorption with High Temperature Dye Solution for Highly Efficient Dye-Sensitized Solar Cells], Journal of The Electrochemical Society, 157 (2010) B1578.
    [25] M. Grätzel, [Recent Advances in Sensitized Mesoscopic Solar Cells], ACCOUNTS OF CHEMICAL RESEARCH, 42 (2009).
    [26] G. Schlichthorl, S.Y. Huang, J. Sprague, A.J. Frank, [Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy], J. Phys. Chem. B, 101 (1997) 8141-8155.
    [27] S.Y. Huang, G. Schlichthorl, A.J. Nozik, M. Gra1tzel, A.J. Frank, [Charge Recombination in Dye-Sensitized Nanocrystalline TiO2], J. Phys. Chem. B, 101 (1997) 2576-2582.
    [28] I. Mora-Sero´, J. Bisquert, [Fermi Level of Surface States in TiO2 Nanoparticles], NANO LETTERS, 3 (2003) 945-949.
    [29] Z. Kebede1, S.-E. Lindquist, [The obstructed diffusion of the I3− ion in mesoscopic TiO2 membranes], Solar Energy Materials and Solar Cells 51 (1998) 291—303.
    [30] Y. Liu, A. Hagfeldt, X.-R. Xiao, S.-E. Lindquist, [Investigation of influence of redox species on the interfacial energetics of a dye-sensitized nanoporous TiO2 solar cell], Solar Energy Materials and Solar Cells, 55 (1998) 267—281.
    [31] C.A. Kelly, F. Farzad, D.W. Thompson, J.M. Stipkala, G.J. Meyer, [Cation-Controlled Interfacial Charge Injection in Sensitized Nanocrystalline TiO2], American Chemical Society, 15 (1999) 7047-7054.
    [32] N. Papageorgiou, W.F. Maier, M. Grätzel, [An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media], J. Electrochem. Soc., 144 (1997) 876-884.
    [33] J.-L. Lan, C.-C. Wan, T.-C. Wei, W.-C. Hsu, Y.-H. Chang, [Durability test of PVP-capped Pt nanoclusters counter electrode for highly efficiency dye-sensitized solar cell], Progress in Photovoltaics: Research and Applications, 20 (2012) 44-50.
    [34] T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-m. Chen, H.-s. Shiu, [Immobilization of Poly(N-vinyl-2-pyrrolidone)-Capped Platinum Nanoclusters on Indium-Tin Oxide Glass and Its Application in Dye-Sensitized Solar Cells], J. Phys. Chem. C, 111 (2007) 4847-4853.
    [35] J.-L. Lan, C.-C. Wan, T.-C. Wei, W.-C. Hsu, C. Peng, Y.-H. Chang, C.-M. Chen, [Improvement of Photovoltaic Performance of Dye-Sensitized Solar Cell by Post Heat Treatment of Polymer-Capped Nano-Platinum Counterelectrode], Int. J. Electrochem. Sci., 6 (2011) 1230 - 1236.
    [36] I. Zhitomirsky, [Cathodic electrodeposition of ceramic and organoceramic materials. Fundamental aspects], Advances in Colloid and Interface Science, 97 (2002) 279-317.
    [37] N. Koura, T. Tsukamoto, H. Shoji, T. Hotta, [Preparation of various oxide films by an electrophoretic deposition method: astudy of the mechanism], jpn. j. appl. phys, 34 (1995) 1643-1647.
    [38] K. Kamada, K. Maehara, M. Mukai, S. Ida, Y. Matsumoto, [Fabrication of metal oxide–diamond composite films by EPD], J. Mater. Res., 18 (2003) 2826-2831.
    [39] A. Formento, L. Montanaro, [Micromechanical Characterization of Electrophoretic-Deposited Green Films], J. Am. Ceram. Soc., 82 (1999) 3521–3528.
    [40] O.O.V.d. Biest, L.J. Vandeperre, [ELECTROPHORETIC DEPOSITION OF MATERIALS], Annu. Rev. Mater. Sci, 29 (1999) 327–352.
    [41] J.A. Lewis, [Colloidal Processing of Ceramics], J. Am. Ceram. Soc., 83 (2000) 2341–2359.
    [42] D. Matthews, A. Kay, M. Gratzel, [Electrophoretically Deposited Titanium Dioxide Thin Films for P hotovoltaic Cells], Aust. J. Chem., 47 (1994) 1869-1877.
    [43] K. Fujimura, S. Yoshikado, [Preparation of TiO2 Thin Film for Dye Sensitized Solar Cell Deposited by Electrophoresis Method], Key Engineering Materials, 248 (2003) 133-136.
    [44] J. TABELLION, R. CLASEN, [Electrophoretic deposition from aqueous suspensions for near-shape manufacturing of advanced ceramics and glasses—applications], JOURNAL OF MATERIALS SCIENCE, 39 (2004) 803– 811.
    [45] G.-S. Kim, H.-K. Seo, V.P. Godble, Y.-S. Kim, O.B. Yang, H.-S. Shin, [Electrophoretic deposition of titanate nanotubes from commercial titania nanoparticles: Application to dye-sensitized solar cells], Electrochemistry Communications, 8 (2006) 961-966.
    [46] L. Grinis, S. Dor, A. Ofir, A. Zaban, [Electrophoretic deposition and compression of titania nanoparticle films for dye-sensitized solar cells], Journal of Photochemistry and Photobiology A: Chemistry, 198 (2008) 52-59.
    [47] H. Chang, T.L. Chen, K.D. Huang, S.H. Chien, K.C. Hung, [Fabrication of highly efficient flexible dye-sensitized solar cells], Journal of Alloys and Compounds, 504 (2010) S435-S438.
    [48] W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, Y. Lin, [Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells], Electrochimica Acta, 54 (2009) 4467-4472.
    [49] H.-W. Chen, K.-C. Huang, C.-Y. Hsu, C.-Y. Lin, J.-G. Chen, C.-P. Lee, L.-Y. Lin, R. Vittal, K.-C. Ho, [Electrophoretic deposition of TiO2 film on titanium foil for a flexible dye-sensitized solar cell], Electrochimica Acta, (2010).
    [50] 陳良哲, [二氧化鈦電泳沉積於背照可撓式染料敏化太陽能電池之應用], 國立成功大學化學工程學系碩士論文, (2012).
    [51] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, [Formation of Titanium Oxide Nanotube], American Chemical Society, 14 (1998) 3160-3163.
    [52] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, [Titania Nanotubes Prepared by Chemical Processing], Adv. Mater, 15 (1999) 1307-1311.
    [53] P.M. Sommeling, B.C. O’Regan, R.R. Haswell, H.J.P. Smit, N.J. Bakker, J.J.T. Smits, J.M. Kroon, J.A.M.v. Roosmalen, [Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells], J. Phys. Chem. B, 110 (2006) 19191-19197.
    [54] B.C. O’Regan, J.R. Durrant, P.M. Sommeling, N.J. Bakker, [Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit], J. Phys. Chem. C, 111 (2007) 14001-14010.
    [55] J. Kru1ger, R. Plass, M. Gra1tzel, P.J. Cameron, L.M. Peter, [Charge Transport and Back Reaction in Solid-State Dye-Sensitized Solar Cells: A Study Using Intensity-Modulated Photovoltage and Photocurrent Spectroscopy], J. Phys. Chem. B, 107 (2003) 7536-7539.
    [56] R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, [Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions], Electrochimica Acta, 47 (2002) 4213/4225.
    [57] M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, [Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy], J. Phys. Chem. B, 110 (2006) 13872-13880.
    [58] F. Fabregat-Santiago, J. Bisquert, E. Palomares, L. Otero, D. Kuang, S.M. Zakeeruddin, M. Gra1tzel, [Correlation between Photovoltaic Performance and Impedance Spectroscopy of Dye-Sensitized Solar Cells Based on Ionic Liquids], J. Phys. Chem. C, 111 (2007) 6550-6560.
    [59] M. Yan, F. Chen, J. Zhang, M. Anpo, [Preparation of Controllable Crystalline Titania and Study on the Photocatalytic Properties], J. Phys. Chem. B, 109 (2005) 8673-8678.
    [60] B.D. Cullity, S.R. Stock, [Elements of X-Ray Diffraction], 3rd ed. Prentice, (2001).
    [61] C.-C. Tsai, H. Teng, [Structural Features of Nanotubes Synthesized from NaOH], Chem. Mater., 18 (2006) 367-373.
    [62] P.-T. Hsiao, Y.-L. Tung, H. Teng, [Electron Transport Patterns in TiO2 Nanocrystalline Films of Dye-Sensitized Solar Cells], J. Phys. Chem. C, 114 (2010) 6762–6769.
    [63] P.-T. Hsiao, Y.-J. Liou, H. Teng, [Electron Transport Patterns in TiO2Nanotube Arrays Based Dye-Sensitized Solar Cells under Frontside and Backside Illuminations], The Journal of Physical Chemistry C, 115 (2011) 15018-15024.
    [64] 劉永進, [染料敏化太陽能電池剛性及可繞二氧化鈦層之電泳成膜研究], 國立成功大學化學工程學系碩士論文, (2011).
    [65] L.M. Peter, [Characterization and Modeling of Dye-Sensitized Solar Cells], J. Phys. Chem. C, 111 (2007) 6601-6612.
    [66] Q. Wang, S. Ito, M. Gra1tzel, F. Fabregat-Santiago, I.n. Mora-Sero´, J. Bisquert, T. Bessho, H. Imai, [Characteristics of High Efficiency Dye-Sensitized Solar Cells], J. Phys. Chem. B, 110 (2006) 25210-25221.
    [67] H.-J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, N.-G. Park, [Size-dependent scattering efficiency in dye-sensitized solar cell], Inorganica Chimica Acta, 361 (2008) 677-683.
    [68] M. Hamadaniana, H. Sayahib, A.R. Zolfagharici, [Effect of large TiO2 Nanoparticles as Light Scatter in Matrix of Small Nanoparticles to Improve the Efficiency in Dye- Sensitized Solar Cell], journal of nanostructure, (2012) 139-143.
    [69] S. Hore, P. Nitz, C. Vetter, C. Prahl, M. Niggemann, R. Kern, [Scattering spherical voids in nanocrystalline TiO2- enhancement of efficiency in dye-sensitized solar cells], Chemical communications, (2005) 2011-2013.
    [70] S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, [Influence of scattering layers on efficiency of dye-sensitized solar cells], Solar Energy Materials and Solar Cells, 90 (2006) 1176-1188.
    [71] N. Kopidakis, K.D. Benkstein, J.v.d. Lagemaat, A.J. Frank, [Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells], J. Phys. Chem. B, 107 (2003) 11307-11315.

    下載圖示 校內:2018-08-13公開
    校外:2018-08-13公開
    QR CODE