簡易檢索 / 詳目顯示

研究生: 胡永毅
Wu, Weng-Ngai
論文名稱: 利用COMSOL進行碳化矽物理氣相長晶之全域數值模擬
Numerical Global Simulation of Silicon carbide PVT growth with COMSOL®
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 135
中文關鍵詞: 碳化矽物理氣相長晶大塊單晶成長
外文關鍵詞: Silicon Carbide, PVT growth, Bulk crystal growth
相關次數: 點閱:110下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以通用模擬軟體COMSOL®,耦合磁場、熱場、流場、物質輸送現象和相場逵行碳化矽物理氣相傳輸之長晶模擬。在當中會討論到感應生熱線圈之幾何設計、輻射熱在長晶爐腔內之傳播、固–氣體間之揮發–凝華模型(赫茲–克努森模型)、碳化矽粉末在粉末填充區之揮發情況等一系列碳化矽物理氣相傳輸長晶之相關議題。在前提條件準備完成後,模型會耦合相場進行暫態的長晶模擬,並最終會預測出以論文內坩鍋設計所長出的結晶型狀。本研究的核心是建立一個具可塑性的碳化矽長晶爐模擬之模型,為日後加入摻雜、冷卻和缺陷分析等功能提供基礎可靠的參考。

    In this study, simulation of SiC PVT growth has been done by coupling magnetic field, heat transfer, fluid dynamics, mass transports and phase field modules to present a precise growth simulation in COMSOL®. To perform the simulation, serval topic, such as, design of coil and geometry, radiation in growth chamber, Hertz Knudsen model for SiC growth, powder evolution during the growth process, phase field coupling issues have been discussed. Finally, different couple methods of phase field and other modules are shown in result. The goal of this work is to create a flexible model, which can further develop for doping, dislocation analysis for SiC PVT growth.

    摘要 i ABSTRACT ii Acknowledgement iii Content iv List of figures viii List of tables xiii Nomenclature xiv Material properties xxi 1 Introduction to SiC growth 1 2 Simulation of PVT method 8 2.1 Heat transfer model 8 2.1.1 Heat induction 8 2.1.2 Heat radiation 10 2.1.3 Heat conduction and convection in porous media 18 2.2 Fluid dynamics model 21 2.2.1 Flow condition 21 2.2.2 Fluid dynamics in the growth chamber 24 2.3 Interaction between gaseous species and chamber component 26 2.3.1 Species generation and its behavior 26 2.4 Thermodynamic data calculation 27 2.4.1 Vapor pressure calculation with JANAF database 29 2.4.2 Species equilibrium in powder source 30 2.4.3 Species equilibrium on seed surface 31 2.4.4 Species kinetics and thermal equilibrium 37 2.4.5 Theoretical approach for kinetic parameters 39 2.4.6 Ab-initial calculation of reaction kinetics between SiC gas species 40 2.4.7 Sticking coefficient on seed surface 42 2.4.8 Consistency check for growth model 44 2.5 Mass transport model 45 2.5.1 Mass transportation in source powder 45 2.5.2 Mass transportation on seed layer surface 50 2.5.3 Mass transport in graphite crucible 51 2.5.4 Mass transport in gas room 52 2.6 Phase field model 52 2.6.1 Basic of phase field method 53 2.6.2 Interface coupling for phase field model 60 2.6.3 Preparation for phase field coupling 61 3 Numerical modeling 63 3.1 Introduction to Finite Volume Method and Finite Element Method 63 3.2 Building blocks of numerical method 66 3.2.1 Node and mesh 67 3.2.2 Shape function 67 3.3 Matrix formation 69 3.4 System matrix and coupling 70 3.5 Geometry of the PVT growth chamber 71 3.5.1 Coil geometry 73 3.5.2 Crucible geometry 77 3.6 Moving mesh and Phase field 78 3.7 Mesh settings 80 3.8 Boundary conditions of simulation 82 3.9 Discretization of element 84 3.10 Convergence conditions 85 4 Results and discussions 86 4.1 Magnetic field of growth chamber 86 4.1.1 Skin depth calculation from simulation 86 4.1.2 Frequency analysis for growth chamber 89 4.2 Temperature field of growth chamber 92 4.2.1 Nusselt number in the growth chamber 92 4.2.2 Temperature evolution during the growth process 93 4.2.3 Geometry changes effect 93 4.2.4 Temperature on seed layer 97 4.2.5 Temperature profile of the growth chamber 98 4.3 Fluid dynamics of growth chamber 98 4.3.1 Reynold’s number in the growth chamber 99 4.3.2 Knudsen number in the growth chamber 100 4.3.3 Partial pressure of species in growth chamber 101 4.4 Species concentration in growth chamber 104 4.4.1 Species concentration distribution 104 4.4.2 Si/C ratio distribution 106 4.4.3 Growth rate on seed layer 108 4.4.4 Time evolution of powder 110 4.5 Crystal growth simulation with phase field 113 4.5.1 Time dependent simulation of SiC crystal growth 113 4.5.2 Time dependent growth rate and growth front temperature of SiC seed 116 5 Conclusions 121 A Appendix 123 A.1 Derivation of differential volume dV to radius dr 123 A.2 Using test variable to solve weak form equation 124 References 125

    1. Kestin, J., K. Knierim, E. Mason, B. Najafi, S. Ro, and M. Waldman, Equilibrium and transport properties of the noble gases and their mixtures at low density. Journal of physical and chemical reference data, 1984. 13(1): p. 229-303.
    2. Chase Jr, M.W., NIST-JANAF thermochemical tables. J. Phys. Chem. Ref. Data, Monograph, 1998. 9.
    3. Hauf, W. and U. Grigull, Optical methods in heat transfer, in Advances in heat transfer. 1970, Elsevier. p. 133-366.
    4. Clergent, Y., C. Durou, and M. Laurens, Refractive index variations for argon, nitrogen, and carbon dioxide at λ= 632.8 nm (He− Ne laser light) in the range 288.15 K≤ T≤ 323.15 K, 0< p< 110 kPa. Journal of Chemical & Engineering Data, 1999. 44(2): p. 197-199.
    5. Wijnberg, L., Temperature Effect on the Scattering Coefficient of Nonideal Gases at Constant Pressure. JOSA, 1961. 51(8): p. 916_1-917.
    6. Chen, S. and S. Saxena, Thermal conductivity of argon in the temperature range 350 to 2500 K. Molecular Physics, 1975. 29(2): p. 455-466.
    7. Hull, R., Properties of crystalline silicon. 1999: IET.
    8. Harris, G.L., Properties of silicon carbide. 1995: Iet.
    9. Ariyawong, K., Process modeling for the growth of SiC using PVT and TSSG methods. 2015, Université Grenoble Alpes.
    10. Wellmann, P.J., Review of SiC crystal growth technology. Semiconductor Science and Technology, 2018. 33(10): p. 103001.
    11. Roccaforte, F., P. Fiorenza, M. Vivona, G. Greco, and F. Giannazzo, Selective Doping in Silicon Carbide Power Devices. Materials, 2021. 14(14): p. 3923.
    12. Knippenberg, W.F., Growth phenomena in silicon carbide. Philips Research Report, 1963. 18: p. 161-274.
    13. Kimoto, T. and J.A. Cooper, Fundamentals of silicon carbide technology: growth, characterization, devices and applications. 2014: John Wiley & Sons.
    14. Seki, K., S. Kozawa, S. Harada, T. Ujihara, and Y. Takeda, Polytype-selective growth of SiC by supersaturation control in solution growth. Journal of crystal growth, 2012. 360: p. 176-180.
    15. Ellison, A., J. Zhang, J. Peterson, A. Henry, Q. Wahab, J. Bergman, Y. Makarov, A. Vorob’ev, A. Vehanen, and E. Janzén, High temperature CVD growth of SiC. Materials Science and Engineering: B, 1999. 61: p. 113-120.
    16. Kordina, O., C. Hallin, A. Henry, J. Bergman, I. Ivanov, A. Ellison, N.T. Son, and E. Janzén, Growth of SiC by “Hot‐Wall” CVD and HTCVD. physica status solidi (b), 1997. 202(1): p. 321-334.
    17. Fraga, M. and R. Pessoa, Progresses in Synthesis and Application of SiC Films: From CVD to ALD and from MEMS to NEMS. Micromachines, 2020. 11(9): p. 799.
    18. St G, M., R. Glass, H. Hobgood, V. Tsvetkov, M. Brady, D. Henshall, D. Malta, R. Singh, J. Palmour, and C. Carter Jr, Progress in the industrial production of SiC substrates for semiconductor devices. Materials Science and Engineering: B, 2001. 80(1-3): p. 327-331.
    19. Chen, Q.-S., P. Gao, and W. Hu, Effects of induction heating on temperature distribution and growth rate in large-size SiC growth system. Journal of crystal growth, 2004. 266(1-3): p. 320-326.
    20. Ma, R.-H., H. Zhang, M. Dudley, and V. Prasad, Thermal system design and dislocation reduction for growth of wide band gap crystals:: application to SiC growth. Journal of crystal growth, 2003. 258(3-4): p. 318-330.
    21. Anthony, L.J., Sublimation process for manufacturing silicon carbide crystals. 1958, Google Patents.
    22. Hoshino, N., I. Kamata, Y. Tokuda, E. Makino, T. Kanda, N. Sugiyama, H. Kuno, J. Kojima, and H. Tsuchida, Fast growth of n-type 4H-SiC bulk crystal by gas-source method. Journal of Crystal Growth, 2017. 478: p. 9-16.
    23. Wellmann, P., G. Neubauer, L. Fahlbusch, M. Salamon, and N. Uhlmann, Growth of SiC bulk crystals for application in power electronic devices–process design, 2D and 3D X‐ray in situ visualization and advanced doping. Crystal Research and Technology, 2015. 50(1): p. 2-9.
    24. Wellmann, P., M. Bickermann, D. Hofmann, L. Kadinski, M. Selder, T. Straubinger, and A. Winnacker, In situ visualization and analysis of silicon carbide physical vapor transport growth using digital X-ray imaging. Journal of crystal growth, 2000. 216(1-4): p. 263-272.
    25. Selder, M., L. Kadinski, Y. Makarov, F. Durst, P. Wellmann, T. Straubinger, D. Hofmann, S. Karpov, and M. Ramm, Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT. Journal of crystal growth, 2000. 211(1-4): p. 333-338.
    26. Hofmann, D., M. Heinze, A. Winnacker, F. Durst, L. Kadinski, P. Kaufmann, Y. Makarov, and M. Schäfer, On the sublimation growth of SiC bulk crystals: development of a numerical process model. Journal of crystal growth, 1995. 146(1-4): p. 214-219.
    27. Chen, Q.-S., J.-Y. Yan, and V. Prasad, Application of flow-kinetics model to the PVT growth of SiC crystals. Journal of crystal growth, 2007. 303(1): p. 357-361.
    28. Chen, Q.-S., H. Zhang, V. Prasad, C. Balkas, N. Yushin, and S. Wang, Kinetics and modeling of sublimation growth of silicon carbide bulk crystal. Journal of crystal growth, 2001. 224(1-2): p. 101-110.
    29. Ma, R., H. Zhang, V. Prasad, and M. Dudley, Growth kinetics and thermal stress in the sublimation growth of silicon carbide. Crystal growth & design, 2002. 2(3): p. 213-220.
    30. Bogdanov, M., A. Galyukov, S.Y. Karpov, A. Kulik, S. Kochuguev, D.K. Ofengeim, A. Tsiryulnikov, M. Ramm, A. Zhmakin, and Y.N. Makarov, Virtual reactor as a new tool for modeling and optimization of SiC bulk crystal growth. Journal of crystal growth, 2001. 225(2-4): p. 307-311.
    31. COMSOL Multiphysics® ver. 6.0. www.comsol.com. COMSOL AB, Stockholm, Sweden.
    32. Ida, N., Engineering electromagnetics. 2015: Springer.
    33. Su, J., X. Chen, and Y. Li, Numerical design of induction heating in the PVT growth of SiC crystal. Journal of crystal growth, 2014. 401: p. 128-132.
    34. Shabalin, I.L., Carbon (graphene/graphite), in Ultra-high temperature materials I. 2014, Springer. p. 7-235.
    35. Howell, J.R., M.P. Mengüç, K. Daun, and R. Siegel, Thermal radiation heat transfer. 2020: CRC press.
    36. Ren, D., H. Tan, Y. Xuan, Y. Han, and Q. Li, Apparatus for measuring spectral emissivity of solid materials at elevated temperatures. International Journal of Thermophysics, 2016. 37(5): p. 51.
    37. Shabalin, I.L., Ultra-high temperature materials I: carbon (graphene/graphite) and refractory metals. 2014: Springer.
    38. Thorn, R. and O. Simpson, Spectral emissivities of graphite and carbon. Journal of Applied Physics, 1953. 24(5): p. 633-639.
    39. Johnson, P., D. DeWitt, and R. Taylor, Method for measuring high temperature spectral emissivity of nonconducting materials. AIAA Journal, 1981. 19(1): p. 113-120.
    40. Burgemeister, E., W. Von Muench, and E. Pettenpaul, Thermal conductivity and electrical properties of 6 H silicon carbide. Journal of Applied Physics, 1979. 50(9): p. 5790-5794.
    41. Patrick, L. and W.J. Choyke, Static dielectric constant of SiC. Physical Review B, 1970. 2(6): p. 2255.
    42. SIGRAFINE® Die-Molded Carbon and Graphite. 2022; Available from: https://www.sglcarbon.com/en/markets-solutions/material/sigrafine-die-molded-carbon-and-graphite/.
    43. Bearden, J., A precision determination of the viscosity of air. Physical Review, 1939. 56(10): p. 1023.
    44. Cherednichenko, D., R. Drachev, and T. Sudarshan, Self-congruent process of SiC growth by physical vapor transport. Journal of crystal growth, 2004. 262(1-4): p. 175-181.
    45. Karniadakis, G., A. Beskok, and N. Aluru, Microflows and nanoflows: fundamentals and simulation. Vol. 29. 2006: Springer Science & Business Media.
    46. Gobrecht, D., S. Cristallo, L. Piersanti, and S.T. Bromley, Nucleation of small silicon carbide dust clusters in AGB stars. The Astrophysical Journal, 2017. 840(2): p. 117.
    47. Pernot, E., M. Pons, and R. Madar, Crystal Growth of Silicon Carbide: Evaluation and Modeling, in SiC Power Materials. 2004, Springer. p. 123-160.
    48. Pisch, A., A.M. Ferraria, C. Chatillon, E. Blanquet, M. Pons, C. Bernard, M. Anikin, and R. Madar. Evaporation behavior of SiC powder for single crystal growth-An experimental study on thermodynamics and kinetics. in Materials Science Forum. 2000. Trans Tech Publications Ltd., Zurich-Uetikon, Switzerland.
    49. Ariyawong, K., E. Blanquet, J.M. Dedulle, T. Ouisse, and D. Chaussende. Comparison of Thermodynamic Databases for the Modeling of SiC Growth by PVT. in Materials Science Forum. 2014. Trans Tech Publ.
    50. Malcolm W. Chase, Jr., NIST-JANAF thermochemical tables. 1998: Fourth edition. Washington, DC : American Chemical Society ; New York : American Institute of Physics for the National Institute of Standards and Technology, 1998.
    51. Lilov, S., Study of the equilibrium processes in the gas phase during silicon carbide sublimation. Materials Science and Engineering: B, 1993. 21(1): p. 65-69.
    52. Barrett, D., J. McHugh, H. Hobgood, R. Hopkins, P. McMullin, R. Clarke, and W. Choyke, Growth of large SiC single crystals. Journal of crystal growth, 1993. 128(1-4): p. 358-362.
    53. Yakimova, R., M. Syväjärvi, T. Iakimov, H. Jacobsson, R. Råback, A. Vehanen, and E. Janzén, Polytype stability in seeded sublimation growth of 4H–SiC boules. Journal of Crystal Growth, 2000. 217(3): p. 255-262.
    54. Tupitsyn, E., A. Arulchakkaravarthi, R. Drachev, and T. Sudarshan, Controllable 6H-SiC to 4H-SiC polytype transformation during PVT growth. Journal of Crystal Growth, 2007. 299(1): p. 70-76.
    55. La Via, F., A. Severino, R. Anzalone, C. Bongiorno, G. Litrico, M. Mauceri, M. Schoeler, P. Schuh, and P. Wellmann, From thin film to bulk 3C-SiC growth: Understanding the mechanism of defects reduction. Materials Science in Semiconductor Processing, 2018. 78: p. 57-68.
    56. Honstein, G., C. Chatillon, and F. Baillet, Thermodynamic approach to the vaporization and growth phenomena of SiC ceramics. I. SiC and SiC–SiO2 mixtures under neutral conditions. Journal of the European Ceramic Society, 2012. 32(5): p. 1117-1135.
    57. Masi, M. and A. Veneroni, Reduced gas phase and surface kinetics for silicon carbide epitaxial growth. ECS Transactions, 2007. 2(7): p. 11.
    58. Takai, T., T. Halicioǧlu, and W. Tiller, Adsorption, potential maps and diffusion of Si, C, and SiC on a Si (111) surface. Surface science, 1985. 164(2-3): p. 327-340.
    59. Alao, A.A. and W.-D. Hsu, Kinetics and thermodynamics of silicon carbide physical vapor transport reactions: A quantum chemistry and kinetic Monte Carlo approach. Chemical Physics, 2022. 554: p. 111421.
    60. Tairov, Y.M., Growth of bulk SiC. Materials Science and Engineering: B, 1995. 29(1-3): p. 83-89.
    61. Li, H., X. Chen, D. Ni, and X. Wu, Factors affecting the graphitization behavior of the powder source during seeded sublimation growth of SiC bulk crystal. Journal of crystal growth, 2003. 258(1-2): p. 100-105.
    62. Pons, M., M. Anikin, K. Chourou, J. Dedulle, R. Madar, E. Blanquet, A. Pisch, C. Bernard, P. Grosse, and C. Faure, State of the art in the modelling of SiC sublimation growth. Materials Science and Engineering: B, 1999. 61: p. 18-28.
    63. Kim, J.G., E.J. Jung, Y. Kim, Y. Makarov, and D.J. Choi, Quality improvement of single crystal 4H SiC grown with a purified β-SiC powder source. Ceramics International, 2014. 40(3): p. 3953-3959.
    64. Abderrazak, H. and E. Hmida, Silicon carbide: synthesis and properties. Properties and applications of Silicon Carbide, 2011: p. 361-388.
    65. Herro, Z., P. Wellmann, R. Püsche, M. Hundhausen, L. Ley, M. Maier, P. Masri, and A. Winnacker, Investigation of mass transport during PVT growth of SiC by 13C labeling of source material. Journal of crystal growth, 2003. 258(3-4): p. 261-267.
    66. Liu, X., B.-y. Chen, L.-X. Song, E.-W. Shi, and Z.-Z. Chen, The behavior of powder sublimation in the long-term PVT growth of SiC crystals. Journal of crystal growth, 2010. 312(9): p. 1486-1490.
    67. Huang, J., R. Guo, L. Tao, Q. Wang, and Z. Liu, Effects of Stefan flow on metallurgical coke gasification with CO2. Energy & Fuels, 2020. 34(3): p. 2936-2944.
    68. Wang, Z.-L., Z. Liu, Z.-F. Huang, and W. Duan, Minimal phase-field crystal modeling of vapor-liquid-solid coexistence and transitions. Physical Review Materials, 2020. 4(10): p. 103802.
    69. Stewart, J.A. and D.E. Spearot, Phase-field simulations of microstructure evolution during physical vapor deposition of single-phase thin films. Computational Materials Science, 2017. 131: p. 170-177.
    70. He, W., D. Geng, and Z. Xu, Pattern evolution characterizes the mechanism and efficiency of CVD graphene growth. Carbon, 2019. 141: p. 316-322.
    71. Fix, G.J., Phase field methods for free boundary problems. 1982.
    72. Langer, J.S., Instabilities and pattern formation in crystal growth. Reviews of modern physics, 1980. 52(1): p. 1.
    73. Cahn, J.W., Free energy of a nonuniform system. II. Thermodynamic basis. The Journal of chemical physics, 1959. 30(5): p. 1121-1124.
    74. Cahn, J.W. and J.E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics, 1958. 28(2): p. 258-267.
    75. Cahn, J.W. and J.E. Hilliard, Free energy of a nonuniform system. III. Nucleation in a two‐component incompressible fluid. The Journal of chemical physics, 1959. 31(3): p. 688-699.
    76. Allen, S.M. and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta metallurgica, 1979. 27(6): p. 1085-1095.
    77. Warren, J.A., R. Kobayashi, A.E. Lobkovsky, and W.C. Carter, Extending phase field models of solidification to polycrystalline materials. Acta Materialia, 2003. 51(20): p. 6035-6058.
    78. Lobkovsky, A.E. and J.A. Warren, Phase field model of premelting of grain boundaries. Physica D: Nonlinear Phenomena, 2002. 164(3-4): p. 202-212.
    79. Syväjärvi, M., R. Yakimova, A. Kakanakova-Georgieva, M. MacMillan, and E. Janzén, Kinetics and morphological stability in sublimation growth of 6H and 4H SiC epitaxial layers. Materials Science and Engineering: B, 1999. 61: p. 161-164.
    80. Sharma, A., Equilibrium and dynamics of evaporating or condensing thin fluid domains: thin film stability and heterogeneous nucleation. Langmuir, 1998. 14(17): p. 4915-4928.
    81. Balluffi, R.W., S.M. Allen, and W.C. Carter, Kinetics of materials. 2005.
    82. Lee, J. and K.-Y. Hwang, A hybrid numerical analysis of heat transfer and thermal stress in a solidifying body using FVM and FEM. International journal of engineering science, 1996. 34(8): p. 901-922.
    83. Idelsohn, S.R. and E. Onate, Finite volumes and finite elements: two ‘good friends’. International journal for numerical methods in engineering, 1994. 37(19): p. 3323-3341.
    84. Dong, G., J. Zou, R.H. Bayford, X. Ma, S. Gao, W. Yan, and M. Ge, The comparison between FVM and FEM for EIT forward problem. IEEE Transactions on Magnetics, 2005. 41(5): p. 1468-1471.
    85. Hughes, T.J., G. Engel, L. Mazzei, and M.G. Larson, The continuous Galerkin method is locally conservative. Journal of Computational Physics, 2000. 163(2): p. 467-488.
    86. Meyer, C. and P. Philip, Optimizing the temperature profile during sublimation growth of SiC single crystals: Control of heating power, frequency, and coil position. Crystal Growth & Design, 2005. 5(3): p. 1145-1156.
    87. Yang, C., G. Liu, C. Chen, Y. Hou, M. Xu, and Y. Zhang, Numerical simulation of temperature fields in a three-dimensional SiC crystal growth furnace with axisymmetric and spiral coils. Applied Sciences, 2018. 8(5): p. 705.
    88. Incropera, F.P., D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentals of heat and mass transfer. Vol. 6. 1996: Wiley New York.
    89. Powell, A.R. and L.B. Rowland, SiC materials-progress, status, and potential roadblocks. Proceedings of the IEEE, 2002. 90(6): p. 942-955.
    90. Matukov, I., D. Kalinin, M. Bogdanov, S.Y. Karpov, D.K. Ofengeim, M. Ramm, J. Barash, E. Mokhov, A. Roenkov, and Y.A. Vodakov, Modeling of facet formation in SiC bulk crystal growth. Journal of crystal growth, 2004. 266(1-3): p. 313-319.
    91. Matukov, I., D. Kalinin, M. Bogdanov, S.Y. Karpov, D.K. Ofengeim, M. Ramm, J. Barash, E. Mokhov, A. Roenkov, and Y.A. Vodakov. Faceted growth of SiC bulk crystals. in Materials Science Forum. 2004. Trans Tech Publ.
    92. Tymicki, E., K. Grasza, R. Diduszko, R. Bożek, and M. Gała, Initial stages of SiC crystal growth by PVT method. Crystal Research and Technology: Journal of Experimental and Industrial Crystallography, 2007. 42(12): p. 1232-1236.
    93. Steiner, J., M. Arzig, A. Denisov, and P.J. Wellmann, Impact of varying parameters on the temperature gradients in 100 mm silicon carbide bulk growth in a computer simulation validated by experimental results. Crystal Research and Technology, 2020. 55(2): p. 1900121.

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE