簡易檢索 / 詳目顯示

研究生: 毛彬旭
Mao, Bin-Hsu
論文名稱: 建立結合細胞、電腦模擬及果蠅實驗之替代測試平台來探討奈米銀誘發毒性之細胞與分子機轉
Establishing an alternative testing platform combining in vitro, in silico and Drosophila-based approaches to explore the cellular and molecular basis of AgNPs-induced toxicity
指導教授: 王應然
Wang, Ying-Jan
共同指導教授: 顏賢章
Yan, Shian-Jang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 117
中文關鍵詞: 奈米銀替代性測試策略果蠅資料庫知識探索決策樹細胞凋亡自噬作用細胞週期休止胰臟炎DNA損傷Nrf2-依賴抗氧化途徑TRAP1蛋白
外文關鍵詞: silver nanoparticles, alternative testing strategies, Drosophila melanogaster, knowledge discovery in database, decision tree, apoptosis, autophagy, cell cycle arrest, pancreatitis, DNA damage, Nrf2-dependent antioxidant pathway, TRAP1
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米科技產業的蓬勃發展已讓奈米毒理學與奈米危害風險評估兩個領域並進發展。哺乳動物模式已被廣泛應用於測定化學物的暴露對人類與環境可能造成的危害效應,然而在過去的數十年間使用這些活體檢測平台卻因為道德倫理上的考量而備受批評。全球都在呼籲要建立可靠的、能替代哺乳動物模式的檢測方法。雖然許多替代測試策略(例如:體外試驗與電腦模擬方法以及使用非哺乳動物模式)已經被快速地發展出來,但人造奈米微粒所具有的獨特物理化學特性,卻為其發展帶出不同於傳統化學物的考量,即要根據奈米化後所產生的新條件來改善這些測試法。

    奈米銀被認為是一把兩刃的利劍,取決於本身的物理化學特性(主要為粒徑大小與表面修飾的種類)而讓其在應用上呈現出不同的利弊影響。然而,關於奈米銀的粒徑與表面修飾的種類對其所引發之危害效應上所扮演的角色,這類體外與體內的機轉研究文獻仍相當缺乏。在本博士論文的第一部份研究中,我們針對不同大小(較小粒徑 v.s.較大粒徑)與不同表面修飾(檸檬酸v.s.半胱胺)之奈米銀(總共四種,包括SCS, LCS, SAS與LAS)所誘發之毒性機轉,透過體外試驗、電腦模擬及體內試驗等方法,來進行現象上的觀察與機轉上的探討。為了符合減量,取代與優化的三原則,我們採取結合了決策樹理論與資料庫知識探索程序之電腦模擬方法來排比會影響奈米毒性之相關參數:暴露劑量、暴露時間、細胞株的選擇、與奈米銀的類型。根據所建立之預測模型,這四個參數對奈米銀誘發細胞毒性的影響排序如下:暴露時間>細胞株的選擇>奈米銀種類≥暴露時間。藉由預測模型所獲得之知識讓我們將這部分的研究從細胞層級上的現象觀察轉型成更精深的體外與體內機轉研究。不論奈米銀的種類為何,只要是能造成顯著細胞毒性的劑量,奈米銀就會透過引發細胞凋亡(非引發細胞壞死)來降低細胞的存活率,同時也會在暴露的初期活化自噬作用,這可視為一種能保護細胞降低奈米銀毒性影響的早期事件。此外,長時間暴露在不會影響細胞存活的劑量下,奈米銀可能會讓細胞進入G2/M細胞休止期,而後走向細胞老化。非常有趣的一件事是,我們發現表面帶負電的SCS微粒,跟表面帶正電的SAS微粒相比,經由腹腔注射到體內,會對BALB/c小鼠產生更強烈的毒性。不過這兩種奈米銀微粒注入腹腔後,都會沈積在許多器官(例如:脾臟、肝臟與腎臟)。除了會引發肝臟發炎之外,根據直接的外觀觀察、血清化學以及組織病理檢測的結果,我們發現致死劑量的奈米銀急性暴露還會對胰臟造成破壞,並且讓血糖濃度上升。

    在此博士論文的第二部分研究中,我們使用了一種強大的替代性體內測試平台-果蠅模式-來探討攝入的奈米銀在個體、細胞以及分子的層級上,所引發的各種危害效應。攝入致死劑量的奈米銀會讓果蠅的幼蟲發育遲緩,並且提高受暴露的幼蟲及剛羽化的成蟲的死亡率。很重要的一點是,暴露亞致死劑量,即使對發育中的幼蟲不會產生顯著的危害,仍然會讓羽化後的成蟲的壽命縮短,並且也會顯著降低它們對氧化壓力的耐受力。攝入致死劑量的奈米銀會造成系統性的自由基累積,透過Nrf2報導系統轉殖的果蠅進行研究,顯示奈米銀的暴露會啟動Nrf2抗氧化途徑,此外也會誘發許多藉由自由基來做介導的壓力反應,包括細胞凋亡、DNA損傷、與自噬作用。此外,奈米銀的暴露也會削弱幼蟲蠕動與成蟲攀爬的能力,而這可能歸因於我們所觀察到奈米銀對粒線體的結構與功能上的負影響。在分子層級,我們發現增強對粒線體內平衡維持很重要的伴護蛋白TRAP1之表達可以顯著提升果蠅對奈米銀的抗性,降低它們的死亡率與改善它們的運動能力。

    總的來說,這個結合了體外試驗、電腦模擬與果蠅模式實驗的研究成果,可讓我們對奈米銀誘發之系統性與器官專一性毒性的機轉,同時在細胞、亞細胞與分子層次上獲得更深入的見解。此外,根據我們的研究成果,我們提出呼籲要小心長期暴露在亞致死或環境相關低劑量下奈米銀對人類的壽命與健康狀態也可能會產生危害效應。

    The exponential growth in nanotechnology industry has guaranteed matching progress in the nanotoxicology and risk assessment fields. Mammalian models have been extensively used to determine human and environmental risks arising from exposure to chemicals; however, the use of these in vivo platforms in research has been subject to condemnation, owing to ethical considerations for several decades. Global appeals are being launched for developing reliable alternatives to mammalian organisms-based testing approaches. Although various alternative testing strategies (ATS) (e.g., in vitro and in silico approaches, and usage of non-mammalian models) have been rapidly established, distinctive physico-chemical features of engineered nanoparticles (ENPs) bring forth distinct considerations from traditional chemicals, display-ing new requirements for modifying these testing approaches for ENPs.

    Silver nanoparticles (AgNPs) are considered a double-edged sword that demonstrates advantageous and unfavorable effects depending on their physico-chemical characteristics, especially dimensions and surface coating types. However, mechanistic reports regarding size- and coating agent-dependent adverse effects of AgNPs remain inadequate in vitro and in vivo. In the first part of this dissertation, we phenotypically and mechanistically explore the toxicity mechanisms of AgNPs with distinct sizes (i.e., smaller v.s. larger) and dissimilar surface coatings (i.e., citrate v.s. cysteamine) (totally four AgNP types: SCS, LCS, SAS, and LAS) through integration of in vitro, in silico, and in vivo approaches. In keeping with the 3R principles, a decision tree-based knowledge-discovery-in-databases (KDD) process was adopted to rank the toxicity-relevant attributes, including dose, time, choice of cell type, and particle type. As predicted by the tree model, the order of influence towards AgNPs-induced cytotoxicity was as follows. dose > cell type > particle type ≥ time. The acquired knowledge was employed to transform this research form cell-based phenomenological observations to further in vitro and in vivo mechanistic explorations. Regardless of particle type, AgNPs at cytotoxic doses triggered apoptosis rather than necrosis to compromise cell viability; in the meanwhile, the exposure could also activate autophagy, which might serve as an early cyto-protective event against AgNPs-induced damage. Chronic exposure to non-cytotoxic doses of AgNPs might allow the cells to undergo G2/M cell cycle arrest and render them senescent. Intriguingly, negatively charged SCS, via intraperitoneal (IP) injection, appeared more toxic to BALB/c mice than positively charged SAS. Both AgNP types could be found deposited in various organs (e.g., spleen, liver, and kidneys). Apart from leading to hepatic inflam-mation, direct morphological examination, accompanied by serum biochemistry and histo-logical analysis, indicated that lethal-dose AgNPs exposure could incur severe damage to pancreas and raise blood glucose levels at the early phase of exposure.

    In the second part of this dissertation, we used a powerful alternative in vivo platform, Drosophila melanogaster, to explore a wide-spectrum of adverse effects exerted by dietary AgNPs at the organismal, cellular and molecular levels. Lethal doses of dietary AgNPs led to developmental delay and profound lethality of the larvae and young adults. Importantly, exposure to sublethal doses, while not deleterious to developing animals, shor-tened the adult lifespan and compromised their tolerance towards oxidative stress. Under the lethal scenario, dietary AgNPs mechanistically led to systemic accrual of reactive oxygen species (ROS); they correspondingly activated the Nrf2-dependent antioxidant pathway, as revealed by an in vivo Nrf2 activity reporter. Our research data suggested that dietary AgNPs caused a variety of ROS-mediated stress responses, including apoptosis, DNA damage, and auto-phagy. In addition, such exposure also impaired crawling and climbing performance of the larval and adult flies, respectively, which might be attributable to AgNPs negative impacts on mitochondrial structure and function. At the molecular level, we identified that over-expression of TRAP1, a chaperone protein crucial for mitochondrial homeostasis, signifi-cantly conferred resistance to AgNPs toxicity upon flies, by reducing mortality and improv-ing motor performance.

    In conclusion, the findings from this integrative in vitro, in silico, and Drosophila-based research could shed light on the cellular, subcellular and molecular mechanisms of AgNPs systemic and organ-specific toxicity. Besides, our data also put forward the caution for the adverse impacts of long-term exposure to sublethal, or even environmentally-relevant low concentrations of AgNPs on human life-span and healthspan.

    博士論文口試合格證明……………………………………………………………………………I Abstract in Chinese………………………………………………………………………………II Abstract in English………………………………………………………………………………IV 致謝…………………………………………………………………………………………………VI Abbreviation……………………………………………………………………………………XVI Publication list…………………………………………………………………………………XVIII Introduction………………………………………………………………………………………1 1. The imperious demands for interrogating the mechanisms of AgNPs-induced toxicity………………………………………………………………………………………………1 2. The important parameters dictating toxicity and biocompatibility of AgNPs………………………………………………………………………………………………3 3. Integrative alternative testing strategies for nanotoxicological research……………………………………………………………………………………………5 4. Drosophila as powerful model for assessing the mechanisms of nanotoxicity………………………………………………………………………………………7 Objectives…………………………………………………………………………………………9 Materials and Methods………………………………………………………………………10 1. Fabrication and characterization of SCS, LCS, SAS and LAS particles…………10 2. Preparation of smaller-sized RBITC-conjugated AgNP particles…………………11 3. Cell lines and culture conditions………………………………………………………11 4. In vitro AgNPs exposure…………………………………………………………………12 5. Cell viability assessment…………………………………………………………………12 6. Decision tree-based KDD process……………………………………………………13 7. Apoptosis assay by flow cytometry……………………………………………………13 8. Autophagy assay by flow cytometry…………………………………………………14 9. Cell cycle analysis…………………………………………………………………………14 10. Senescence-associated -galactosidase activity assay…………………………14 11. Clonogenic assay…………………………………………………………………………15 12. Western blot analysis……………………………………………………………………15 13. In vivo exposure……………………………………………………………………………15 14. Serum biochemistry analysis……………………………………………………………16 15. Biodistribution and bioaccumulation assessments…………………………………16 16. Macroscopic and histopathological examinations………………………………17 17. Drosophila strains…………………………………………………………………………17 18. Dietary AgNPs exposure………………………………………………………………… 17 19. Atomic absorption spectrometry………………………………………………………18 20. Longevity assay……………………………………………………………………………18 21. Paraquat challenge assay………………………………………………………………18 22. Dihydroethidium (DHE) staining…………………………………………………………19 23. ARE reporter gene induction assay……………………………………………………19 24. Whole-mount immunofluorescence analyses of apoptosis and DNA damage…………………………………………………………………………………………19 25. ATP luminescence assay……………………………………………………………… 19 26. Climbing assay……………………………………………………………………………20 27. Crawling assay……………………………………………………………………………20 28. mtDNA copy number assay……………………………………………………………20 29. Statistical analysis…………………………………………………………………………21 Experimental design………………………………………………………………………… 22 Part 1: Use of an in silico knowledge discovery approach to translate mechanistic studies of silver nanoparticles-induced toxicity from in vitro to in vivo………………22 Part 2: Use of Drosophila melanogaster as a non-mammalian alternative model system to explore the mechanisms of systemic toxic effects exerted by ingested silver nanoparticles at the cellular, subcellular and molecular levels………………22 Results…………………………………………………………………………………………… 23 Part 1: Use of an in silico knowledge discovery approach to translate mechanistic studies of silver nanoparticles-induced toxicity from in vitro to in vivo………………23 1.1. Physicochemical properties of SCS, LCS, SAS, and LAS……………………………23 1.2. Exposures to SCS, LCS, SAS and LAS induced cytotoxicity in both dose-dependent and cell type-specific manners………………………………………………24 1.3. Predictive modeling of AgNPs-evoked toxicity through the decision tree-based KDD process……………………………………………………………………………………………26 1.4. Apoptosis as an underlying mechanism of AgNPs-induced cell demise………28 1.5. Autophagy as an early cytoprotective event against AgNPs-induced toxicity……………………………………………………………………………………………29 1.6. AgNPs at non-cytotoxic doses had the potential to cause G2/M cell cycle arrest and senescence………………………………………………………………………30 1.7. AgNPs exposure differentially triggered apoptosis, autophagy and cell cycle arrest in a dose-dependent fashion………………………………………………………31 1.8. Exposure to AgNPs via intraperitoneal (IP) injection caused acute toxicity in mice and displayed differential organ distribution and accumulation……………34 1.9. Acute exposure to toxic/lethal doses of AgNPs caused profound pancreatic injury……………………………………………………………………………………………….36 Part 2: Use of Drosophila melanogaster as a non-mammalian alternative model system to explore the mechanisms of systemic toxic effects exerted by ingested silver nanoparticles at the cellular, subcellular and molecular levels………………37 2.1. Silver nanoparticles cause lethal and sublethal adverse effects on development and longevity of Drosophila melanogaster by inducing ROS-mediated stress responses……………………………………………………………………37 2.1.1. Physicochemical characterization of synthetic citrate-capped AgNPs……37 2.1.2. Lethal doses of AgNPs exposure increased larval mortality and interfered with larval development………………………………………………………………………38 2.1.3. Lethal-dose AgNP exposure prolonged the duration of the pupal stage and reduced the eclosion success…………………………………………………………38 2.1.4. Silver deposition within adult flies having received exposure to AgNPs during the larval stage…………………………………………………………………………39 2.1.5. Sublethal AgNPs exposure shortened the adult lifespan and compromised the stress tolerance capacity………………………………………………………………39 2.1.6. Lethal AgNPs exposure resulted in generation of ROS and activation of the Nrf2-dependent antioxidant response………………………………………………40 2.1.7. Lethal AgNPs exposure induced apoptosis and led to double-strand DNA breaks…………………………………………………………………………………………… 41 2.1.8. Lethal AgNPs exposure contributed to profound activation of autophagy………………………………………………………………………………………41 2.2. Other aspects concerning AgNPs-induced adverse effects in vivo……………42 2.2.1. AgNPs compromised locomotor ability of the exposed flies……………… 42 2.2.2. Ingested AgNPs seemed to evoke structural and functional impairments of mitochondria in vivo ………………………………………………………………………42 2.3. Exploring the molecular fundamentals of AgNPs-induced mitotoxicity using the Drosophila model - TRAP1 as an example (unpublished data)…………………43 2.3.1. The expression level of TRAP1 could dictate the susceptibility of Drosophila to AgNPs-induced toxicity……………………………………………………………………44 Discussion…………………………………………………………………………………………45 1. Part 1. Use of an in silico knowledge discovery approach to translate mechanistic studies of silver nanoparticles-induced toxicity from in vitro to in vivo……………………………………………………………………………………………… 45 2. Part 2: Use of Drosophila melanogaster as a non-mammalian alternative model system to explore the mechanisms of systemic toxic effects exerted by ingested silver nanoparticles at the cellular, subcellular and molecular levels……………….49 3. Future perspective……………………………………………………………………… 54 Conclusion………………………………………………………………………………………55 Declaration of contributions to this dissertation research………………………………56 References………………………………………………………………………………………57 Tables and Figures…………………………………………………………………………….71 Appendix………………………………………………………………………………………109

    Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. 2000. The genome sequence of drosophila melanogaster. Science 287:2185-2195.
    Ahamed M, AlSalhi MS, Siddiqui M. 2010. Silver nanoparticle applications and human health. Clinica chimica acta 411:1841-1848.
    Ahamed M, Posgai R, Gorey TJ, Nielsen M, Hussain SM, Rowe JJ. 2010. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in drosophila melanogaster. Toxicol Appl Pharmacol 242:263-269.
    Akter M, Sikder MT, Rahman MM, Ullah AA, Hossain KFB, Banik S, et al. 2018. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of advanced research 9:1-16.
    Al Shoyaib A, Archie SR, Karamyan VT. 2020. Intraperitoneal route of drug administration: Should it be used in experimental animal studies? Pharmaceutical research 37:1-17.
    Al-Doaiss AA, Jarrar Q, Alshehri M, Jarrar B. 2020. In vivo study of silver nanomaterials’ toxicity with respect to size. Toxicology and Industrial Health 36:540-557.
    Allouni ZE, Cimpan MR, Hol PJ, Skodvin T, Gjerdet NR. 2009. Agglomeration and sedimentation of tio2 nanoparticles in cell culture medium. Colloids Surf B Biointerfaces 68:83-87.
    Altieri DC. 2013. Mitochondrial hsp90s and tumor cell metabolism. Autophagy 9:244-245.
    Ansari MA, Shukla AK, Oves M, Khan HM. 2016. Electron microscopic ultrastructural study on the toxicological effects of agnps on the liver, kidney and spleen tissues of albino mice. Environ Toxicol Pharmacol 44:30-43.
    Archer SL. 2008. Dilated cardiomyopathy and left bundle branch block associated with ingestion of colloidal gold and silver is reversed by british antilewisite and vitamin e: The potential toxicity of metals used as health supplements. Canadian Journal of Cardiology 24:397-399.
    Armstrong N, Ramamoorthy M, Lyon D, Jones K, Duttaroy A. 2013. Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8:e53186.
    AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS nano 3:279-290.
    Auclair J, Turcotte P, Gagnon C, Peyrot C, Wilkinson K, Gagné F. 2019. The influence of surface coatings of silver nanoparticles on the bioavailability and toxicity to elliptio complanata mussels. Journal of Nanomaterials 2019.
    Bahamonde J, Brenseke B, Chan MY, Kent RD, Vikesland PJ, Prater MR. 2018. Gold nanoparticle toxicity in mice and rats: Species differences. Toxicologic pathology 46:431-443.
    Baqri RM, Pietron AV, Gokhale RH, Turner BA, Kaguni LS, Shingleton AW, et al. 2014. Mitochondrial chaperone trap1 activates the mitochondrial upr and extends healthspan in drosophila. Mechanisms of ageing and development 141-142:35-45.
    Barbalinardo M, Caicci F, Cavallini M, Gentili D. 2018. Protein corona mediated uptake and cytotoxicity of silver nanoparticles in mouse embryonic fibroblast. Small 14:1801219.
    Barillo DJ, Marx DE. 2014. Silver in medicine: A brief history bc 335 to present. Burns 40 Suppl 1:S3-8.
    Benford DJ, Hanley AB, Bottrill K, Oehlschlager S, Balls M, Branca F, et al. 2000. Biomarkers as predictive tools in toxicity testing. Altern Lab Anim 28:119-131.
    Bengio Y, Delalleau O, Simard C. 2010. Decision trees do not generalize to new variations. Computational Intelligence 26:449-467.
    Bowden LP, Royer MC, Hallman JR, Lewin-Smith M, Lupton GP. 2011. Rapid onset of argyria induced by a silver-containing dietary supplement. Journal of cutaneous pathology 38:832-835.
    Britto AL, Castrucci AM, Visconti MA, Josefsson L. 1990. Quantitative in vitro assay for crustacean chromatophorotropins and other pigment cell agonists. Pigment Cell Res 3:28-32.
    Bückmann D. 1977. Morphological colour change: Stage independent, optically induced ommochrome synthesis in larvae of the stick insect, carausius morosus br. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 115:185-193.
    Capella IC, Hartfelder K. 1998. Juvenile hormone effect on DNA synthesis and apoptosis in caste-specific differentiation of the larval honey bee (apis mellifera l.) ovary. J Insect Physiol 44:385-391.
    Carbone M, Donia DT, Sabbatella G, Antiochia R. 2016. Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University-Science 28:273-279.
    Carew AC, Hoque ME, Metcalfe CD, Peyrot C, Wilkinson KJ, Helbing CC. 2015. Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during xenopus laevis metamorphosis. Aquat Toxicol 159:99-108.
    Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, et al. 2008. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. The journal of physical chemistry B 112:13608-13619.
    Chambers RP, Call GB, Meyer D, Smith J, Techau JA, Pearman K, et al. 2013. Nicotine increases lifespan and rescues olfactory and motor deficits in a drosophila model of parkinson's disease. Behavioural brain research 253:95-102.
    Chen RJ, Chen YY, Liao MY, Lee YH, Chen ZY, Yan SJ, et al. 2020. The current understanding of autophagy in nanomaterial toxicity and its implementation in safety assessment-related alternative testing strategies. Int J Mol Sci 21.
    Chen ZY, Li NJ, Cheng FY, Hsueh JF, Huang CC, Lu FI, et al. 2020. The effect of the chorion on size-dependent acute toxicity and underlying mechanisms of amine-modified silver nanoparticles in zebrafish embryos. Int J Mol Sci 21.
    Cho YM, Mizuta Y, Akagi JI, Toyoda T, Sone M, Ogawa K. 2018. Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol 31:73-80.
    Choi S, Kim S, Bae YJ, Park JW, Jung J. 2015. Size-dependent toxicity of silver nanoparticles to glyptotendipes tokunagai. Environ Health Toxicol 30:e2015003.
    Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S, et al. 2007. P27 phosphorylation by src regulates inhibition of cyclin e-cdk2. Cell 128:281-294.
    Costa AC, Loh SH, Martins LM. 2013. Drosophila trap1 protects against mitochondrial dysfunction in a pink1/parkin model of parkinson's disease. Cell death & disease 4:e467.
    Cuadrado M, Gutierrez-Martinez P, Swat A, Nebreda AR, Fernandez-Capetillo O. 2009. P27kip1 stabilization is essential for the maintenance of cell cycle arrest in response to DNA damage. Cancer Res 69:8726-8732.
    Dănilă O-O, Berghian AS, Dionisie V, Gheban D, Olteanu D, Tabaran F, et al. 2017. The effects of silver nanoparticles on behavior, apoptosis and nitro-oxidative stress in offspring wistar rats. Nanomedicine 12:1455-1473.
    de Oca-Vásquez GM, Solano-Campos F, Vega-Baudrit JR, López-Mondéjar R, Odriozola I, Vera A, et al. 2020. Environmentally relevant concentrations of silver nanoparticles diminish soil microbial biomass but do not alter enzyme activities or microbial diversity. Journal of hazardous materials 391:122224.
    DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, et al. 2014. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nature communications 5:1-10.
    Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92:9363-9367.
    DiPaola RS. 2002. To arrest or not to g2-m cell-cycle arrest: Commentary re: Ak tyagi et al., silibinin strongly synergizes human prostate carcinoma du145 cells to doxorubicin-induced growth inhibition, g2-m arrest, and apoptosis. Clin. Cancer res., 8: 3512–3519, 2002. Clinical cancer research 8:3311-3314.
    Dong J, Sulik KK, Chen SY. 2008. Nrf2-mediated transcriptional induction of antioxidant response in mouse embryos exposed to ethanol in vivo: Implications for the prevention of fetal alcohol spectrum disorders. Antioxid Redox Signal 10:2023-2033.
    Duran N, Silveira CP, Duran M, Martinez DS. 2015. Silver nanoparticle protein corona and toxicity: A mini-review. J Nanobiotechnology 13:55.
    Exbrayat J-M, Moudilou EN, Lapied E. 2015. Harmful effects of nanoparticles on animals. Journal of Nanotechnology 2015.
    Feng X, Chen A, Zhang Y, Wang J, Shao L, Wei L. 2015. Central nervous system toxicity of metallic nanoparticles. Int J Nanomedicine 10:4321-4340.
    Ferdous Z, Nemmar A. 2020. Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21.
    Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, et al. 1996. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(kip1)-deficient mice. Cell 85:733-744.
    Fleischer CC, Payne CK. 2014. Secondary structure of corona proteins determines the cell surface receptors used by nanoparticles. The Journal of Physical Chemistry B 118:14017-14026.
    Frohlich E. 2012. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577-5591.
    Frohlich E. 2018. Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol 46:1091-1107.
    Gagne F, Auclair J, Turcotte P, Gagnon C. 2013. Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. J Toxicol Environ Health A 76:479-490.
    Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S. 2014. Physicochemical properties of nanomaterials: Implication in associated toxic manifestations. Biomed Res Int 2014:498420.
    Georgakilas AG, Redon CE, Ferguson NF, Kryston TB, Parekh P, Dickey JS, et al. 2014. Systemic DNA damage accumulation under in vivo tumor growth can be inhibited by the antioxidant tempol. Cancer Lett 353:248-257.
    Gire V, Dulic V. 2015. Senescence from g2 arrest, revisited. Cell Cycle 14:297-304.
    Gorth DJ, Rand DM, Webster TJ. 2011. Silver nanoparticle toxicity in drosophila: Size does matter. Int J Nanomedicine 6:343-350.
    Hao T, Hai-Tao L, Hai-Feng C. 2013. A thin radar-infrared stealth-compatible structure: Design, fabrication, and characterization. Chinese Physics B 23:025201.
    Hartmann S, Beasley A, Mozhayeva D, Engelhard C, Witte K. 2020. Defective defence in daphnia daughters: Silver nanoparticles inhibit anti-predator defence in offspring but not in maternal daphnia magna. Scientific reports 10:1-9.
    Hassanen EI, Khalaf AA, Tohamy AF, Mohammed ER, Farroh KY. 2019. Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int J Nanomedicine 14:4723-4739.
    Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M. 2007. A new approach to the toxicity testing of carbon-based nanomaterials--the clonogenic assay. Toxicol Lett 174:49-60.
    Hiruma K, Riddiford LM. 2009. The molecular mechanisms of cuticular melanization: The ecdysone cascade leading to dopa decarboxylase expression in manduca sexta. Insect Biochem Mol Biol 39:245-253.
    Horev-Azaria L, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J, et al. 2011. Predictive toxicology of cobalt nanoparticles and ions: Comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicological Sciences 122:489-501.
    Horev-Azaria L, Baldi G, Beno D, Bonacchi D, Golla-Schindler U, Kirkpatrick JC, et al. 2013. Predictive toxicology of cobalt ferrite nanoparticles: Comparative in-vitro study of different cellular models using methods of knowledge discovery from data. Particle and fibre toxicology 10:32.
    Huang AM, Rehm EJ, Rubin GM. 2009. Quick preparation of genomic DNA from drosophila. Cold Spring Harb Protoc 2009:pdb prot5198.
    Huang HJ, Lee YH, Hsu YH, Liao CT, Lin YF, Chiu HW. 2021. Current strategies in assessment of nanotoxicity: Alternatives to in vivo animal testing. Int J Mol Sci 22.
    Ibrahim KE, Al-Mutary MG, Bakhiet AO, Khan HA. 2018. Histopathology of the liver, kidney, and spleen of mice exposed to gold nanoparticles. Molecules 23.
    Ishii T, Warabi E, Siow RCM, Mann GE. 2013. Sequestosome1/p62: A regulator of redox-sensitive voltage-activated potassium channels, arterial remodeling, inflammation, and neurite outgrowth. Free Radic Biol Med 65:102-116.
    ISO_TR13014. 2012. Nanotechnologies-guidance on physicochemical characterization of engineered nanoscale materials for toxicologic assessment. Geneva: International Organization for Standardization.
    Ivanovic A, Dimitrijevic S, Dimitrijevic S, Trumic B, Marjanovic V, Petrovic J, et al. 2012. Electrodeposition of silver powder from nitrate electrolyte for usage in electronic. HNO 2:2.
    Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, et al. 2014. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9:e102108.
    Jin SM, Youle RJ. 2013. The accumulation of misfolded proteins in the mitochondrial matrix is sensed by pink1 to induce park2/parkin-mediated mitophagy of polarized mitochondria. Autophagy 9:1750-1757.
    Kaiser JP, Roesslein M, Diener L, Wichser A, Nowack B, Wick P. 2017. Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. Journal of nanobiotechnology 15:5.
    Kang SJ, Ryoo IG, Lee YJ, Kwak MK. 2012. Role of the nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol Appl Pharmacol 258:89-98.
    Katsumiti A, Gilliland D, Arostegui I, Cajaraville MP. 2015. Mechanisms of toxicity of ag nanoparticles in comparison to bulk and ionic ag on mussel hemocytes and gill cells. PLoS One 10:e0129039.
    Kendall M, Hodges NJ, Whitwell H, Tyrrell J, Cangul H. 2015. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium. Philos Trans R Soc Lond B Biol Sci 370:20140100.
    Khaydarov RR, Khaydarov RA, Evgrafova S, Wagner S, Cho SY. 2011. Environmental and human health issues of silver nanoparticles applications. In: Environmental security and ecoterrorism:Springer, 117-127.
    Kim H, Kim K, Yim J. 2013. Biosynthesis of drosopterins, the red eye pigments of drosophila melanogaster. IUBMB Life 65:334-340.
    Kim JJ, Konkel K, McCulley L, Diak I-L. 2019. Cases of argyria associated with colloidal silver use. Annals of Pharmacotherapy 53:867-870.
    Kim S, Ryu DY. 2013. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 33:78-89.
    Kim Y, Suh HS, Cha HJ, Kim SH, Jeong KS, Kim DH. 2009. A case of generalized argyria after ingestion of colloidal silver solution. American journal of industrial medicine 52:246-250.
    Kiyokawa H, Kineman RD, Manova-Todorova KO, Soares VC, Hoffman ES, Ono M, et al. 1996. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27(kip1). Cell 85:721-732.
    Kovvuru P, Mancilla PE, Shirode AB, Murray TM, Begley TJ, Reliene R. 2015. Oral ingestion of silver nanoparticles induces genomic instability and DNA damage in multiple tissues. Nanotoxicology 9:162-171.
    Kraft C, Peter M, Hofmann K. 2010. Selective autophagy: Ubiquitin-mediated recognition and beyond. Nature cell biology 12:836-841.
    Krenning L, Feringa FM, Shaltiel IA, van den Berg J, Medema RH. 2014. Transient activation of p53 in g2 phase is sufficient to induce senescence. Mol Cell 55:59-72.
    Lakovaara S. 1969. Malt as a culture medium for drosophila species. Drosophila Information Service 44:128.
    Lee H. 2021. Molecular modeling of protein corona formation and its interactions with nanoparticles and cell membranes for nanomedicine applications. Pharmaceutics 13:637.
    Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, et al. 2013. Biopersistence of silver nanoparticles in tissues from sprague-dawley rats. Part Fibre Toxicol 10:36.
    Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukuri PK, Xu XH. 2012. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chem Res Toxicol 25:1029-1046.
    Lee YH, Cheng FY, Chiu HW, Tsai JC, Fang CY, Chen CW, et al. 2014. Cytotoxicity, oxidative stress, apoptosis and the autophagic effects of silver nanoparticles in mouse embryonic fibroblasts. Biomaterials 35:4706-4715.
    Lee YS, Kim DW, Lee YH, Oh JH, Yoon S, Choi MS, et al. 2011. Silver nanoparticles induce apoptosis and g2/m arrest via pkczeta-dependent signaling in a549 lung cells. Arch Toxicol 85:1529-1540.
    Lekamge S, Miranda AF, Ball AS, Shukla R, Nugegoda D. 2019. The toxicity of coated silver nanoparticles to daphnia carinata and trophic transfer from alga raphidocelis subcapitata. PLoS One 14:e0214398.
    Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C. 2013. Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. Journal of the American Chemical Society 135:1438-1444.
    Li CH, Shen CC, Cheng YW, Huang SH, Wu CC, Kao CC, et al. 2012. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology 6:746-756.
    Liang L, Cui M, Zhang M, Zheng P, Deng Z, Gao S, et al. 2015. Nanoparticles' interference in the evaluation of in vitro toxicity of silver nanoparticles. RSC Advances 5:67327-67334.
    Lin Z, Monteiro‐Riviere NA, Riviere JE. 2015. Pharmacokinetics of metallic nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 7:189-217.
    Linkov I, Steevens J, Adlakha-Hutcheon G, Bennett E, Chappell M, Colvin V, et al. 2009. Emerging methods and tools for environmental risk assessment, decision-making, and policy for nanomaterials: Summary of nato advanced research workshop. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology 11:513-527.
    Liu H, Wang X, Wu Y, Hou J, Zhang S, Zhou N, et al. 2019. Toxicity responses of different organs of zebrafish (danio rerio) to silver nanoparticles with different particle sizes and surface coatings. Environ Pollut 246:414-422.
    Liu Z, Chen Y, Zhang H, Jin LH. 2016. Crocus sativus l. Protects against sdsinduced intestinal damage and extends lifespan in drosophila melanogaster. Mol Med Rep 14:5601-5606.
    Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. 2011. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Particle and fibre toxicology 8:18.
    Lou M, Zhang LN, Ji PG, Feng FQ, Liu JH, Yang C, et al. 2016. Quercetin nanoparticles induced autophagy and apoptosis through akt/erk/caspase-3 signaling pathway in human neuroglioma cells: In vitro and in vivo. Biomed Pharmacother 84:1-9.
    Malich G, Markovic B, Winder C. 1997. The sensitivity and specificity of the mts tetrazolium assay for detecting the in vitro cytotoxicity of 20 chemicals using human cell lines. Toxicology 124:179-192.
    Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. 2016. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 10:1021-1040.
    Mao BH, Chen ZY, Wang YJ, Yan SJ. 2018. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ros-mediated stress responses. Sci Rep 8:2445.
    Martin A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M, et al. 2005. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(kip1) and p21(cip1). Cancer Cell 7:591-598.
    Martinez-Esquivias F, Guzman-Flores JM, Perez-Larios A, Rico JL, Becerra-Ruiz JS. 2021. A review of the effects of gold, silver, selenium, and zinc nanoparticles on diabetes mellitus in murine models. Mini Rev Med Chem.
    McGowan JW, Bidwell GL, 3rd. 2016. The use of ex vivo whole-organ imaging and quantitative tissue histology to determine the bio-distribution of fluorescently labeled molecules. J Vis Exp.
    Melaiye A, Youngs WJ. 2005. Silver and its application as an antimicrobial agent. Expert Opin Ther Pat 15:125-130.
    Miethling-Graff R, Rumpker R, Richter M, Verano-Braga T, Kjeldsen F, Brewer J, et al. 2014. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro 28:1280-1289.
    Mirsattari S, Hammond R, Sharpe M, Leung F, Young G. 2004. Myoclonic status epilepticus following repeated oral ingestion of colloidal silver. Neurology 62:1408-1410.
    Mishra AR, Zheng J, Tang X, Goering PL. 2016. Silver nanoparticle-induced autophagic-lysosomal disruption and nlrp3-inflammasome activation in hepg2 cells is size-dependent. Toxicol Sci 150:473-487.
    Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DO, Hosseini A, Rahmati M, et al. 2019. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy 15:4-33.
    Morgan TH. 1910. Sex limited inheritance in drosophila. Science 32:120-122.
    Mulakkal NC, Nagy P, Takats S, Tusco R, Juhasz G, Nezis IP. 2014. Autophagy in drosophila: From historical studies to current knowledge. Biomed Res Int 2014:273473.
    Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, et al. 1996. Mice lacking p27(kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707-720.
    Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622-627.
    Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, et al. 2009. Understanding biophysicochemical interactions at the nano-bio interface. Nature materials 8:543-557.
    Nguyen T, Nioi P, Pickett CB. 2009. The nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291-13295.
    Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K. 2009. The role of autophagy in the heart. Cell Death Differ 16:31-38.
    Oberdorster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, et al. 2005. Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part Fibre Toxicol 2:8.
    Ong C, Yung LY, Cai Y, Bay BH, Baeg GH. 2015. Drosophila melanogaster as a model organism to study nanotoxicity. Nanotoxicology 9:396-403.
    Osborne OJ, Mukaigasa K, Nakajima H, Stolpe B, Romer I, Philips U, et al. 2016. Sensory systems and ionocytes are targets for silver nanoparticle effects in fish. Nanotoxicology 10:1276-1286.
    Pan ZQ, Amin A, Hurwitz J. 1993. Characterization of the in vitro reconstituted cyclin a or b1-dependent cdk2 and cdc2 kinase activities. J Biol Chem 268:20443-20451.
    Panyala NR, Peña-Méndez EM, Havel J. 2008. Silver or silver nanoparticles: A hazardous threat to the environment and human health? Journal of applied biomedicine 6.
    Panzarini E, Mariano S, Vergallo C, Carata E, Fimia GM, Mura F, et al. 2017. Glucose capped silver nanoparticles induce cell cycle arrest in hela cells. Toxicology in vitro : an international journal published in association with BIBRA 41:64-74.
    Park EJ, Yi J, Kim Y, Choi K, Park K. 2010. Silver nanoparticles induce cytotoxicity by a trojan-horse type mechanism. Toxicology in vitro : an international journal published in association with BIBRA 24:872-878.
    Peng C, Zuo Y, Kwan KM, Liang Y, Ma KY, Chan HY, et al. 2012. Blueberry extract prolongs lifespan of drosophila melanogaster. Exp Gerontol 47:170-178.
    Petryk A, Warren JT, Marques G, Jarcho MP, Gilbert LI, Kahler J, et al. 2003. Shade is the drosophila p450 enzyme that mediates the hydroxylation of ecdysone to the steroid insect molting hormone 20-hydroxyecdysone. Proc Natl Acad Sci U S A 100:13773-13778.
    Powers CM, Slotkin TA, Seidler FJ, Badireddy AR, Padilla S. 2011. Silver nanoparticles alter zebrafish development and larval behavior: Distinct roles for particle size, coating and composition. Neurotoxicol Teratol 33:708-714.
    Quevedo AC, Lynch I, Valsami-Jones E. 2021. Silver nanoparticle induced toxicity and cell death mechanisms in embryonic zebrafish cells. Nanoscale 13:6142-6161.
    Raabe M. 1989. Pigment synthesis and breakdown—color change. In: Recent developments in insect neurohormones:Springer, 289-312.
    Rahman MM, Sykiotis GP, Nishimura M, Bodmer R, Bohmann D. 2013. Declining signal dependence of nrf2-mafs-regulated gene expression correlates with aging phenotypes. Aging Cell 12:554-562.
    Rand MD. 2010. Drosophotoxicology: The growing potential for drosophila in neurotoxicology. Neurotoxicology and teratology 32:74-83.
    Rattan R, Bhattacharjee S, Zong H, Swain C, Siddiqui MA, Visovatti SH, et al. 2017. Nanoparticle-macrophage interactions: A balance between clearance and cell-specific targeting. Bioorg Med Chem 25:4487-4496.
    Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, et al. 2016. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Part Fibre Toxicol 13:12.
    Reiter LT, Potocki L, Chien S, Gribskov M, Bier E. 2001. A systematic analysis of human disease-associated gene sequences in drosophila melanogaster. Genome research 11:1114-1125.
    Ribeiro A, Leite P, Falagan-Lotsch P, Benetti F, Micheletti C, Budtz H, et al. 2017. Challenges on the toxicological predictions of engineered nanoparticles. NanoImpact 8:59-72.
    Riddiford LM. 1994. Cellular and molecular actions of juvenile hormone i. General considerations and premetamorphic actions. Advances in insect physiology 24:213-274.
    Rim KT, Song SW, Kim HY. 2013. Oxidative DNA damage from nanoparticle exposure and its application to workers' health: A literature review. Saf Health Work 4:177-186.
    Rogers S, Rice KM, Manne ND, Shokuhfar T, He K, Selvaraj V, et al. 2015. Cerium oxide nanoparticle aggregates affect stress response and function in caenorhabditis elegans. SAGE Open Med 3:2050312115575387.
    Romeo D, Salieri B, Hischier R, Nowack B, Wick P. 2020. An integrated pathway based on in vitro data for the human hazard assessment of nanomaterials. Environ Int 137:105505.
    Saini B, Srivastava S. Nanotoxicity prediction using computational modelling-review and future directions. In: Proceedings of the IOP Conference Series: Materials Science and Engineering, 2018, Vol. 348IOP Publishing, 012005.
    Sanita G, Carrese B, Lamberti A. 2020. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front Mol Biosci 7:587012.
    Sarhan OM, Hussein RM. 2014. Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. Int J Nanomedicine 9:1505-1517.
    Satyanarayana A, Hilton MB, Kaldis P. 2008. P21 inhibits cdk1 in the absence of cdk2 to maintain the g1/s phase DNA damage checkpoint. Mol Biol Cell 19:65-77.
    Savage DT, Hilt JZ, Dziubla TD. 2019. In vitro methods for assessing nanoparticle toxicity. In: Nanotoxicity:Springer, 1-29.
    Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, et al. 2015. Pulmonary toxicity of instilled silver nanoparticles: Influence of size, coating and rat strain. PLoS One 10:e0119726.
    Seok SH, Cho WS, Park JS, Na Y, Jang A, Kim H, et al. 2013. Rat pancreatitis produced by 13-week administration of zinc oxide nanoparticles: Biopersistence of nanoparticles and possible solutions. J Appl Toxicol 33:1089-1096.
    Shannahan JH, Podila R, Aldossari AA, Emerson H, Powell BA, Ke PC, et al. 2015. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci 143:136-146.
    Shatkin J, Ong K. 2016. Alternative testing strategies for nanomaterials: State of the science and considerations for risk analysis. Risk Analysis 36:1564-1580.
    Šileikaitė A, Puišo J, Prosyčevas I, Tamulevičius S. 2009. Investigation of silver nanoparticles formation kinetics during reduction of silver nitrate with sodium citrate. Materials Science (Medžiagotyra) 15:21-27.
    Skalska J, Dabrowska-Bouta B, Frontczak-Baniewicz M, Sulkowski G, Struzynska L. 2020. A low dose of nanoparticulate silver induces mitochondrial dysfunction and autophagy in adult rat brain. Neurotox Res 38:650-664.
    Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C, Mulfinger L. 2007. Synthesis and study of silver nanoparticles. J Chem Educ 84:322-325.
    Song Y, Guan R, Lyu F, Kang T, Wu Y, Chen X. 2014. In vitro cytotoxicity of silver nanoparticles and zinc oxide nanoparticles to human epithelial colorectal adenocarcinoma (caco-2) cells. Mutat Res 769:113-118.
    Song YY, Lu Y. 2015. Decision tree methods: Applications for classification and prediction. Shanghai Arch Psychiatry 27:130-135.
    Srinivasan A, Lehmler HJ, Robertson LW, Ludewig G. 2001. Production of DNA strand breaks in vitro and reactive oxygen species in vitro and in hl-60 cells by pcb metabolites. Toxicol Sci 60:92-102.
    Stepien KM, Morris R, Brown S, Taylor A, Morgan L. 2009. Unintentional silver intoxication following self-medication: An unusual case of corticobasal degeneration. Annals of clinical biochemistry 46:520-522.
    Takamura H, Koyama Y, Matsuzaki S, Yamada K, Hattori T, Miyata S, et al. 2012. Trap1 controls mitochondrial fusion/fission balance through drp1 and mff expression. PLoS One 7:e51912.
    Thummel CS. 1996. Flies on steroids--drosophila metamorphosis and the mechanisms of steroid hormone action. Trends Genet 12:306-310.
    Tice RR, Austin CP, Kavlock RJ, Bucher JR. 2013. Improving the human hazard characterization of chemicals: A tox21 update. Environ Health Perspect 121:756-765.
    Tiwari R, Singh RD, Binwal M, Srivastav AK, Singh N, Khan H, et al. 2021. Perinatal exposure to silver nanoparticles reprograms immunometabolism and promotes pancreatic beta-cell death and kidney damage in mice. Nanotoxicology:1-25.
    Tortella G, Rubilar O, Durán N, Diez M, Martínez M, Parada J, et al. 2020. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of hazardous materials 390:121974.
    Tracy K, Baehrecke EH. 2013. The role of autophagy in drosophila metamorphosis. Curr Top Dev Biol 103:101-125.
    Treuel L, Docter D, Maskos M, Stauber RH. 2015. Protein corona–from molecular adsorption to physiological complexity. Beilstein journal of nanotechnology 6:857-873.
    Truman JW, Hiruma K, Allee JP, Macwhinnie SG, Champlin DT, Riddiford LM. 2006. Juvenile hormone is required to couple imaginal disc formation with nutrition in insects. Science 312:1385-1388.
    van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. 2012. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS nano 6:7427-7442.
    Vazquez-Calvo C, Suhm T, Büttner S, Ott M. 2020. The basic machineries for mitochondrial protein quality control. Mitochondrion 50:121-131.
    Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H, et al. 2014. Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS nano 8:2161-2175.
    Vinluan RD, 3rd, Zheng J. 2015. Serum protein adsorption and excretion pathways of metal nanoparticles. Nanomedicine (Lond) 10:2781-2794.
    Vukovic B, Milic M, Dobrosevic B, Milic M, Ilic K, Pavicic I, et al. 2020. Surface stabilization affects toxicity of silver nanoparticles in human peripheral blood mononuclear cells. Nanomaterials (Basel) 10.
    Wang D, Dan M, Ji Y, Wu X, Wang X, Wen H. 2020. Roles of ros and cell cycle arrest in the genotoxicity induced by gold nanorod core/silver shell nanostructure. Nanoscale Res Lett 15:224.
    Wang J, Wang WX. 2014. Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (oryzias melastigma). Environ Sci Technol 48:8152-8161.
    Wang Q, Zhou Y, Fu R, Zhu Y, Song B, Zhong Y, et al. 2018. Distinct autophagy-inducing abilities of similar-sized nanoparticles in cell culture and live c. Elegans. Nanoscale 10:23059-23069.
    Wu H, Lin J, Liu P, Huang Z, Zhao P, Jin H, et al. 2016. Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by agnps. Biomaterials 101:1-9.
    Wu M, Chen L, Li R, Dan M, Liu H, Wang X, et al. 2018. Bio-distribution and bio-availability of silver and gold in rat tissues with silver/gold nanorod administration. RSC advances 8:12260-12268.
    Xu Y, Wang L, Bai R, Zhang T, Chen C. 2015. Silver nanoparticles impede phorbol myristate acetate-induced monocyte-macrophage differentiation and autophagy. Nanoscale 7:16100-16109.
    Xue Y, Zhang S, Huang Y, Zhang T, Liu X, Hu Y, et al. 2012. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol 32:890-899.
    Yamanaka N, Rewitz KF, O'Connor MB. 2013. Ecdysone control of developmental transitions: Lessons from drosophila research. Annu Rev Entomol 58:497-516.
    Yang Y-F, Cheng Y-H, Liao C-M. 2017. Nematode-based biomarkers as critical risk indicators on assessing the impact of silver nanoparticles on soil ecosystems. Ecological Indicators 75:340-351.
    Yokel RA, Tseng MT, Butterfield DA, Hancock ML, Grulke EA, Unrine JM, et al. 2020. Nanoceria distribution and effects are mouse-strain dependent. Nanotoxicology 14:827-846.
    Yu NH, Pei H, Huang YP, Li YF. 2017. (-)-epigallocatechin-3-gallate inhibits arsenic-induced inflammation and apoptosis through suppression of oxidative stress in mice. Cell Physiol Biochem 41:1788-1800.
    Yumrutas O, Kara M, Atilgan R, Kavak SB, Bozgeyik I, Sapmaz E. 2015. Application of talcum powder, trichloroacetic acid and silver nitrate in female rats for non-surgical sterilization: Evaluation of the apoptotic pathway mrna and mirna genes. Int J Exp Pathol 96:111-115.
    Zabirnyk O, Yezhelyev M, Seleverstov O. 2007. Nanoparticles as a novel class of autophagy activators. Autophagy 3:278-281.
    Zhai Y, Brun NR, Bundschuh M, Schrama M, Hin E, Vijver MG, et al. 2018. Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates. Aquatic Sciences 80:1-7.
    Zhang XF, Shen W, Gurunathan S. 2016. Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model. Int J Mol Sci 17.
    Zhao C-M, Wang W-X. 2012. Size-dependent uptake of silver nanoparticles in daphnia magna. Environmental science & technology 46:11345-11351.
    Zhao Y, Zhang Y. 2008. Comparison of decision tree methods for finding active objects. Advances in Space Research 41:1955-1959.
    Zhou X, Riddiford LM. 2002. Broad specifies pupal development and mediates the 'status quo' action of juvenile hormone on the pupal-adult transformation in drosophila and manduca. Development 129:2259-2269.
    Zielinska E, Zauszkiewicz-Pawlak A, Wojcik M, Inkielewicz-Stepniak I. 2018. Silver nanoparticles of different sizes induce a mixed type of programmed cell death in human pancreatic ductal adenocarcinoma. Oncotarget 9:4675-4697.
    Zirin J, Cheng D, Dhanyasi N, Cho J, Dura JM, Vijayraghavan K, et al. 2013. Ecdysone signaling at metamorphosis triggers apoptosis of drosophila abdominal muscles. Dev Biol 383:275-284.

    下載圖示 校內:2025-10-31公開
    校外:2025-10-31公開
    QR CODE