| 研究生: |
葉衣祺 Yeh, Yi-Chi |
|---|---|
| 論文名稱: |
國產材非膠合集成梁的產製與靜曲行為 Bending behaviour and manufacturing process of non-glue laminated timber made of domestic wood in Taiwan |
| 指導教授: |
葉玉祥
Yeh, Yu-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 非膠合集成梁 、靜曲實驗 、國產柳杉 、硬木榫 、結構用自攻螺絲 |
| 外文關鍵詞: | non-glue laminated beam, bending test, domestic wood, hardwood dowel, self-tapping screw |
| 相關次數: | 點閱:204 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以國產柳杉作為結構用集成材為對象,主要探討非膠合之集成梁構件的靜曲行為,此構法以施工容易、可回收利用、減低對環境衝擊且具有結構性能。集成梁試體斷面尺寸為150 x 304 mm,跨距3600 mm,依據CNS 11031 集成12組對稱異等級結構用集成材之梁構件,配置等級分為E85-F255與E95-F270。集成材分別採用不同的集成工法,膠合構件之黏著劑作為集成元間的緊固機制,而非膠合構件則以橫貫緊固件提供集成元間的抗剪強度,本研究選用自攻螺絲與硬木榫作為橫貫緊固件,並以間距100 mm、150 mm與200 mm為配置參數;其中,硬木榫直徑為20 mm且鎖入間距為100 mm、150 mm與200 mm;自攻螺絲採用直徑8 mm且鎖入間距為100 mm、150 mm。接著藉由足尺的四點抗彎試驗獲得集成梁之剛度,並和歐洲規範5之有效抗彎剛度公式計算出理論值與實驗值相互比較。
實驗結果顯示膠連接能有效束制梁的彎曲變形,非膠合集成梁之剛度是膠合集成梁約13%。在相同緊固件的參數下,緊固件間距越小剛度增加,非膠合集成梁約提升二至三成的剛度值。緊固件之型式影響剛度值,硬木榫-非膠合集成梁之剛度平均高於約兩成自攻螺絲-非膠合集成梁試體。本研究主要討論荷載-撓度圖比例限度內之第一線性段,12組集成梁試體未達到極限破壞,僅有少數有明顯的劈裂情形,依木纖維方向並不屬於受拉側纖維破壞,說明梁未形成彎矩破壞。最後經由歐洲規範5之有效彎曲剛度公式計算的理論值以評估剪力連接機制的效益,其理論值高估於本研究之實驗值。本研究所獲得的實驗結果可作為未來開發與優化非膠合構件之參考數據。
The paper is focused on the composite behaviour of laminated wooden beams with different shear connections. According to CNS 11031, this study configures symmetric composition of heterogeneous-grade laminated beam, labelled as E95-F270 and E85-F255. The 12 laminated beams apply Taiwanese domestic wood, which is named Japanese cedar, and possess the cross-section of 150 mm x 308 mm and length of 3.6 m. Each beam is composed of eight laminas with thickness of 8 mm. The 12 specimens comprise three types of shear connections, i.e. adhesive, hardwood dowel and self-tapping screw (STS). Among the 12 beams, 6 of them are laminated by means of hardwood dowel whose diameter is 20 mm. The dowels are inserted 90-degree in one row with spacing of 10, 15 and 20 cm. Four beams are transversally laminated by STS whose diameter is 8 mm. The STS is drilled 90-degree to the laminas and its spacing is 10 cm and 15 cm. Two beams are bonded by resin as reference glulam. A four-point bending test rig is intended for estimating the flexural behaviour of the 12 beams. The deflection, load and relative displacement between laminas are recorded and collected simultaneously by data-logging system. These data are used to appraise the bending behaviour, particularly stiffness, of the beams with diverse laminating techniques. Besides the testing, an analytic verification is carried out based on Eurocode 5. The effective bending stiffness formula contributes to evaluate the EI values of each beam. Then, the testing results and theoretaicl values are compared to each other. The testing results indicate that, with the same grade, the stiffness can be achieved. Both non-glue laminated timber reveals the same trend. With the same spacing, the hardwood dowel provides higher stiffness than the STS does.
[1] Gutkowski, R., Brown, K., Shigidi, A., & Natterer, J. (2008). Laboratory tests of composite wood-concrete beams. Construction and Building Materials, 22(6), 1059-1066. Retrieved from http://www.sciencedirect.com/science/article/pii/S0950061807000827. doi:https://doi.org/10.1016/j.conbuildmat.2007.03.013
[2] Ross, R. J. (2010). Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190, 2010: 509 p. 1 v., 190.
[3] EN 408, Timber Structures - Structural Timber and Glued Laminated Timber -Determination of Some Physical and Mechanical Properties, 2012.
[4] Bowers, T., Puettmann, M. E., Ganguly, I., & Eastin, I. (2017). Cradle-to-Gate Life-Cycle Impact Analysis of Glued-Laminated (Glulam) Timber: Environmental Impacts from Glulam Produced in the US Pacific Northwest and Southeast. Forest Products Journal, 67(5/6), 368-380. doi:http://dx.doi.org/10.13073/FPJ-D-17-00008
[5] El Houjeyri, I., Oudjene, M., Khelifa, M., Rogaume, Y., Sotayo, A., & Guan, Z. (2018). Structural performance of double shear softwood and hardwood timber-to-timber joints assembled through densified wood dowels. Paper presented at the 2018 World Conference on Timber Engineering, WCTE 2018, August 20, 2018 - August 23, 2018, Seoul, Korea, Republic of.
[6] Fragiacomo, M., Dujic, B., & Sustersic, I. (2011). Elastic and ductile design of multi-storey crosslam massive wooden buildings under seismic actions. Engineering Structures, 33(11),3043-3053.Retrieved from http://www.sciencedirect.com/science/article/pii/S0141029611002203. doi:https://doi.org/10.1016/j.engstruct.2011.05.020
[7] Gfeller, B., Zanetti, M., Properzi, M., Pizzi, A., Pichelin, F., Lehmann, M., & Delmotte, L. (2003). Wood bonding by vibrational welding. Journal of Adhesion Science and Technology, 17(11), 1573-1589. Retrieved from
https://doi.org/10.1163/156856103769207419. doi:10.1163/156856103769207419
[8] Gubana, A. (2015). State-of-the-Art Report on high reversible timber to timber strengthening interventions on wooden floors. Construction and Building Materials, 97, 25-33. doi:10.1016/j.conbuildmat.2015.06.035
[9] Herzog, T., Natterer, J., Schweitzer, R., Volz, M., & Winter, W. (2012). Timber construction manual: Walter de Gruyter.
[10] EN 1995-1:2004+A2:2014, Eurocode 5: Design of Timber Structures - Part 1-1: Common Rules and Rules for Buildings, CEN, Eur. Comm. Stand., Brussels,2014.
[11] Izzi, M., Casagrande, D., Bezzi, S., Pasca, D., Follesa, M., & Tomasi, R. (2018). Seismic behaviour of Cross-Laminated Timber structures: A state-of-the-art review. Engineering Structures,170,42-52.Retrieved from http://www.sciencedirect.com/science/article/pii/S0141029617338361. doi:https://doi.org/10.1016/j.engstruct.2018.05.060
[12] Jelušič, P., & Kravanja, S. (2018). Flexural analysis of laminated solid wood beams with different shear connections. Construction and Building Materials, 174, 456-465. doi:10.1016/j.conbuildmat.2018.04.102
[13] Moody, R. C., & Hernandez, R. (1997). Glued-laminated timber. Forest Product Laboratory. USDA Forest Service. Madison, Winconsin.
[14] O’Loinsigh, C., Oudjene, M., Ait-Aider, H., Fanning, P., Pizzi, A., Shotton, E., & Meghlat, E. M. (2012). Experimental study of timber-to-timber composite beam using welded-through wood dowels. Construction and Building Materials, 36, 245-250. doi:10.1016/j.conbuildmat.2012.04.118
[15] Pizzi, A., Leban, J. M., Kanazawa, F., Properzi, M., & Pichelin, F. (2004). Wood dowel bonding by high-speed rotation welding. Journal of Adhesion Science and Technology, 18(11), 1263-1278. Retrieved from https://doi.org/10.1163/1568561041588192. doi:10.1163/1568561041588192
[16] Söffker, G. H., & Deplazes, A. (2005). Constructing architecture: materials, processes, structures: Springer Science & Business Media.
[17] Sotayo, A., Au, S.-K., & Guan, Z. (2018). Finite element modelling and testing of timber laminated beams fastened with compressed wood dowels. Paper presented at the 2018 World Conference on Timber Engineering, WCTE 2018, August 20, 2018 - August 23, 2018, Seoul, Korea, Republic of.
[18] Haller, P., Helmbach, C., & Yeh, Y. (2013). Bauweisen, Konstruktionen, Tragwerke und Verbindungen im Holzbau: Auswertung des Archives von Julius Natterer Bois Consult: Inst. für Stahl- und Holzbau, Professur für Ingenieurholzbau und Baukonstruktives Entwerfen.
[19] 日本集成材工業協同組合. (2012). 集成材建築物設計の手引: 大成出版社.
[20] 木質構造研究会. (2012). 新・木質構造建築読本: ティンバーエンジニアリングの実践と展開: 木未来.
[21] 稲山正弘. (2017). 中大規模木造建築物の構造設計の手引き: 彰国社.
[22] 中華民國國家標準. (2014). 結構用集成材 Structural glued-laminated timber. In (Vol. CNS 11031). Taiwan: 中華民國國家標準.
[23] 李佳如, 張夆榕, 林志憲, 與 楊德新. (2014). 35年生國產柳杉分等結構用材之機械性質評估. [Mechanical Properties of 35-year-old Japanese Cedar Graded Structural Lumber in Taiwan]. 林產工業, 33(2), 61-70. doi:10.6561/fpi.2014.33(2).1
[24] 李佳如, 與 楊德新. (2010). 應用非破壞檢測技術評估杉木集成元之抗彎性質. [Evaluation of Bending Properties of China fir Laminae Using Nondestructive Testing]. 林業研究季刊, 32(4), 45-59. doi:10.29898/shbq.201012.0005
[25] 哈重福. (1987). 木材的結構與設計: 明文書局.
[26] 葉民權, 李文雄, 與 林玉麗. (2006). 國產柳杉造林木開發結構用集成材之研究. [Study of Structural Glulam Manufacturing from Domestic Japanese Cedar Plantation Wood]. 臺灣林業科學, 21(4), 531-546. doi:10.7075/tjfs.200612.0531
[27] 葉民權, 林玉麗, 與 宋雲煒. (2018). 結構用自攻螺絲接合之集成材雙剪抵抗性能評估. [Evaluation of the Performance of the Double-Shear Resistance of Glulam Connections Using Structural Self-tapping Screws]. 臺灣林業科學, 33(2), 141-161.
[28] 詹為巽, 與 林俊成. (2016). 國內製材業者使用國產木材之現況. 林業研究專訊, 23(6), 114-117.
[29] 蔡育昇. (2017). 以生命週期評估方法探討高層木構造建築的可行性 -比較木構造與RC構造集合住宅的環境效益. 成功大學, Available from Airiti AiritiLibrary database. (2017年)