簡易檢索 / 詳目顯示

研究生: 蔡定宏
Tsai, Ding-Hong
論文名稱: 電動機車真的環保嗎?以生命週期評估法分析替代能源運用於機車之環境效益
Are electric motorcycles friendly to environment? The benefits of alternative energy: life cycle assessment
指導教授: 張瀞之
Chang, Ching-Chih
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 60
中文關鍵詞: 電動機車替代能源生命週期評估法(LCA)碳足跡(CFP)溫室氣體排放(GHG)
外文關鍵詞: Electric Motorcycle, Alternative Energy, Life Cycle Assessment (LCA), Carbon Footprint (CFP), Greenhouse Gases (GHG)
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究動機 6 1.3. 研究目的 7 1.4. 研究架構 8 1.5. 小節 8 第二章 文獻回顧 10 2.1 生命週期評估法評估汽機車之文獻 10 2.2 汽機車服務階段之碳排文獻回顧 12 2.3 能源發電之溫室氣體排放 13 2.4 小節 14 第三章 研究方法 19 3.1 車體說明 19 3.2 碳足跡評估方法 20 3.3 碳足跡流程與製成地圖 21 3.3.1 碳足跡流程 21 3.3.2 製成地圖 23 3.4 碳足跡模型 29 3.5 回收系統模型 30 3.6 小節 31 第四章 實證分析 32 4.1 燃油機車與電動機車生命週期碳排放量 32 4.2 各能源之每千瓦小時二氧化碳當量排放 36 4.2.1燃煤發電 36 4.2.2天然氣發電 37 4.2.3氫能發電 38 4.2.4水力發電 40 4.2.5太陽能發電 40 4.2.6風力發電 42 4.2.7各能源比較 43 4.3 各能源運用於電動機車之生命週期溫室氣體排放45 4.4 小節 47 第五章 結論與建議 49 5.1 結論 49 5.2 建議 50 5.3 研究限制 51 5.4 未來研究方向 51 參考文獻 53 英文文獻 53 中文文獻 57 附錄 60

    英文文獻.
    Ambrose, H., Kendall, A., Lozano, M., Wachche, S., & Fulton, L. (2020). Trends in life cycle greenhouse gas emissions of future light duty electric vehicles. Transportation Research Part D, 81, 102287.
    British Standards Institution. (2011). PAS 2050:2011. Retrieved November 18, 2020, from https://shop.bsigroup.com/upload/shop/download/pas/pas2050.pdf
    Cox, B.L., & Mutel, C.L. (2018). The environmental and cost performance of current and future motorcycles. Applied Energy, 212, 1013-1024
    Economist Intelligence Unit. (2009). Countdown to Copenhagen Government, business and the battle against climate change. Retrieved November 18, 2020, from http://graphics.eiu.com/marketing/pdf/copenhagen/Sustainability_2009.pdf
    EEA. (2018a). CO2 emission intensity. Retrieved November 18, 2020, from https://www.eea.europa.eu/data-and-maps/daviz/co2-emission-intensity-5#tab-based-on-linked-open-data24.
    EEA. (2018b). Renewable energy in Europe – 2018. Retrieved November 18, 2020, from https://www.eea.europa.eu/publications/renewable-energy-in-europe-2018#tab-data-references
    Elshurafa A.M., & Peerbocus, N. (2020). Electric vehicle deployment and carbon emissions in Saudi Arabia: A power system perspective, The Electricity Journal, 33 , 106774
    European Commission. (2019). Fourth Report on the State of the Energy Union. Retrieved November 18, 2020, from https://www.europeansources.info/record/fourth-report-on-the-state-of-the-energy-union/
    Gao, C.-k., Na, H.-m., Song, K.-h., Dyer, N., Tian, F., Xu, Q.-j., & Xing, Y.-h. (2019). Environmental impact analysis of power generation from biomass and wind farms in different locations. Renewable and Sustainable Energy Reviews, 102, 307-317.
    Ghandehariun, S., & Kumar, A. (2016). Life cycle assessment of wind-based hydrogen production in Western Canada. International Journal of Hydrogen Energy, 41(22), 9696-9704.
    Govender, I., Thopil, G. A., Inglesi-Lotz, R. (2019). Financial and economic appraisal of a biogas to electricity project. Journal of Cleaner Production, 214, 154-165
    IEA. (2018). CO₂ Emissions from Fuel Comnustion 2018 Highlights, Retrieved November 18, 2020, from https://webstore.iea.org/co2-emissions-from-fuel-combustion-2018-highlights IEA. (2018b). Key world energy statistics. Retrieved November 18, 2020, from https://webstore.iea.org/download/direct/2291?fileName=Key_World_2018.pdf
    IEA. (2019). World Energy Outlook 2019. Retrieved November 18, 2020, from https://www.iea.org/weo2019/
    IEA. (2020). CO₂ Emissions from Fuel Comnustion Overview, Retrieved November 18, 2020, from https://www.iea.org/reports/co2-emissions-from-fuel-combustion-overview
    IPCC. (2014). AR5 Climate Change 2014: Mitigation of Climate Change, 2013. Retrieved November 18, 2020, from https://www.ipcc.ch/report/ar5/wg3/
    IPCC. (2018). Summary for Policymakers. Retrieved November 18, 2020, from https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/
    ISO. (2006a). ISO 14040:2006 Environmental management – Life cycle assessment – Principles and framework. Retrieved November 18, 2020, from https://www.iso.org/standard/37456.html
    ISO. (2006b). ISO 14044:2006 Environment management – Life cycle assessment – Requirements and guidelines for quantification amd communication. Retrieved November 18, 2020, from https://www.iso.org/standard/38498.html
    ISO. (2018). ISO 14067:2018 Greenhouse gases – Carbon footprint of products – Requirements and guidelines for quantification. Retrieved November 18, 2020, from https://www.iso.org/standard/71206.html
    Khan, I., Jack, M.J., & Stephenson, J. (2018). Analysis of greenhouse gas emissions in electricity systems using time-varying carbon intensity, Journal of Cleaner Production, 184, 1091-1101.
    Koossalapeerom, T., Satiennam, T., Satiennam, W., Leelapatra, W., Seedam, A.,& Rakpukdee, T. (2019). Comparative study of real-world driving cycles, energy consumption, and CO2 emissions of electric and gasoline motorcycles driving in a congested urban corridor, Sustainable Cities and Society, 45, 619-627
    Li, F., Ou, R., Xiao, X., Zhou, K., Xie, W., Ma, D., Liu, H., & Song, Z. (2019). Regional comparison of electric vehicle adoption and emission reduction effects in China. Resources, Conservation and Recycling, 149, 724-726
    Li, J., Li, S., & Wu, F. (2020). Research on carbon emission reduction benefit of wind power project based on life cycle assessment theory. Renewable Energy, 155, 456-468.
    Liang, X., Wang, Z., Zhou, Z., Huang, Z., Zhou, J., & Cen, K. (2013). Up-to-date life cycle assessment and comparison study of clean coal power generation technologies in China. Journal of Cleaner Production, 39, 24-31.
    Mahlangu, N., & Thopil, G., A. (2018). Life cycle analysis of external costs of a parabolic trough Concentrated Solar Power plant, Journal of Cleaner Production, 195, 32-43
    Manjunath, A., & Gross, G. (2017). Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs), Energy Policy, 102, 423-429.
    Moro, A., & Lonza, L. (2018). Electricity carbon intensity in European Member States: Impacts on GHG emissions of electric vehicles, Transportation Research Part D, 64, 5-14
    Motorcycle database. (2015). Retrieved January 5, 2021, from https://www.autoevolution.com/moto/
    National Energy Technology Laboratory. (2010). Cost and Performance Baseline for Fossil Energy Plants. Retrieved November 18, 2020, from https://www.nrc.gov/docs/ML1327/ML13274A052.pdf
    Odeh, N. A., & Cockerill, T. T. (2008a). Life cycle analysis of UK coal fired power plants. Energy Conversion and Management, 49(2), 212-220
    Odeh, N. A., & Cockerill, T. T. (2008b). Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage. Energy Policy, 36(1), 367-380.
    Orfanos, N., Mitzelos, D., Sagani, A., Dedoussis V. (2019). Life-cycle environmental performance assessment of electricity generation and transmission systems in Greece. Renewable Energy, 139, 1447-1467
    Ortiz, P., S., Daniel, F.-O., Oliveira, S., Filho, R.M., Osseweijer, P., & Posada, J. (2020). Unit exergy cost and specific CO2 emissions of the electricity generation in the Netherlands, Energy, 208, 118279
    Peng, T., Ou, X., & Yan, X. (2018). Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model, Chemical Engineering Research and Design, 131, 699-708
    Qiao, Q., Zhao, F., Liu, Z., Hao, H., He, X., Przesmitzki, S., V., & Amer, A., A. (2020). Life cycle cost and GHG emission benefits of electric vehicles in China. Transportation Research Part D, 86, 102418.
    Qiao, Q., Zhao, F., Liu, Z., He, X., & Hao, H. (2019). Life cycle greenhouse gas emissions of Electric Vehicles in China: Combining the vehicle cycle and fuel cycle. Energy, 177, 222-233.
    Qiao, Q., Zhao, F., Liu, Z., Jiang, S., & Hao, H. (2017). Comparative Study on Life Cycle CO2 Emissions from the Production of Electric and Conventional Vehicles in China, Energy Procedia, 105, 3584-3595.
    Ruether, J. A., et al. (2004). “Greenhouse gas emissions from coal gasification power generation system.” Journal of Infrastructure System 10(3): 111-119.
    Shulga, R. N., Putilova, I. V., Smirnova, T. S., Ivanova, N . S. (2020). Safe and waste-free technologies using hydrogen electric power generation, International Journal of Hydrogen Energy, 45, 34037-34047
    Solomin, E., Kirpichnikova, I., Amerkhanov, R., Korobatov, D., Lutovats, M., Martyanov, A. (2019). Wind-hydrogen standalone uninterrupted power supply plant for all-climate application, International Journal of Hydrogen Energy, 44, 3433-3449
    Spath, P.L. & Mann, M.K. (2000). Life cycle assessment of natural gas combined cycle power generation system, National Renewable Energy Lab, Golden, CO(US).
    Stoppato, A. (2008). Life cycle assessment of photovoltaic electricity generation. Energy, 33(2), 224-232.
    Teixeira, A.C.R., & Sodré, J.R. (2018). Impacts of replacement of engine powered vehicles by electric vehicles on energy consumption and CO2 emissions, Transportation Research Part D, 59, 375-384
    Timmerberg, S., Sanna, A., Kaltschmitt, M., & Finkbeiner, M. (2019). Renewable electricity targets in selected MENA countries – Assessment of available resources, generation costs and GHG emissions, Energy Reports, 5, 1470-1487.
    Turconi, R., Boldrin, A., Astrup, T. (2013). Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations, Renewable and Sustainable Energy Reviews, 28, 555-565
    UNFCCC. (2020). Kyoto Protocol. Retrieved November 18, 2020, from https://unfccc.int/kyoto_ptotocol
    UNFCCC. (2020). Paris Agreement. Retrieved November 18, 2020, from https://unfccc.int/process-and-meetings/the-paris-agreement
    Verán-Leigh, D., & Vázquez-Rowe, I. (2019). Life cycle assessment of run-of-river hydropower plants in the Peruvian Andes: a policy support perspective. The International Journal of Life Cycle Assessment, 24(8), 1376-1395.
    Wang, L., Wang, Y., Du, H., Zuo, J., Li, R.Y.M., Zhou, Z., & Garvlehn, M.P. (2019). A comparative life-cycle assessment of hydro-, nuclear and wind power: A China study. Applied Energy, 249, 37-45.
    Weber, N.A.B., Rocha, B.P., Schneider, P.S.,Daemme, L.C., & Neto, R.A.P. (2019). Energy and emission impacts of liquid fueled engines compared to electric motors for small size motorcycles based on the Brazilian scenario, Energy, 168, 70-79.
    Weisser, D. (2013). A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies, Energy, 32, 1543-1559
    WMO. (2020). THE GLOBAL CLIMATE IN 2015–2019. Retrieved November 18, 2020, from https://library.wmo.int/doc_num.php?explnum_id=10251
    Wu, P., Ma, X., Ji, J., & Ma, Y. (2017). Review on Life Cycle Assessment of Energy Payback of Solar Photovoltaic Systems and a Case Study. Energy Procedia, 105, 68-74.
    Zhao, X., Liu, S., Yan, F., Yuan, Z., Liu, Z. (2017). Energy conservation, environmental and economic value of the wind power priority dispatch in China, Renewable Energy, 111, 666-675
    中文文獻
    Gogoro. (2020). Retrieved November 18, 2020, from https://www.gogoro.com/tw
    KYMCO. (2020). Retrieved November 18, 2020, from https://www.kymco.com.tw/
    SYM. (2020). Retrieved November 18, 2020, from https://tw.sym-global.com/
    YAMAHA. (2020). Retrieved November 18, 2020, from https://www.yamaha-motor.com.tw/index.aspx
    中崗科技有限公司. (2020). SimaPro. Retrieved November 18, 2020, from http://www.ixon.com.tw/Products/simapro/simapro.htm
    交通部. (2017). 機車使用狀況調查報告. Retrieved Dec. 18, 2020, from https://www.motc.gov.tw
    交通部. (2019). 機車使用狀況調查報告. Retrieved Dec. 18, 2020, from https://www.motc.gov.tw
    交通部. (2019). 運輸研究所運具別排放清冊. Retrieved Dec. 18, 2020, from https://www.iot.gov.tw/mp-1.html
    交通部. (2020). 機車車輛登記數. Retrieved Dec. 18, 2020, from https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301
    行政院農業委員會. (2010). Retrieved January 5, 2021, from https://www.coa.gov.tw/ws.php?id=2445342&print=Y
    行政院. (2017). 2035年禁售燃油機車. Retrieved January 5, 2021, from https://www.ey.gov.tw/Page/9277F759E41CCD91/6069b150-7637-48ca-8c7b-c7559213d3e9
    行政院. (2019). 車量耗能. Retrieved January 5, 2021, from https://auto.itri.org.tw/energy_efficiency_mark_ecar.aspx
    吳宗翰. (2010). 利用生命週期理論評析燃煤電廠溫室氣體排放量之研究, 淡江大學水資源及環境工程學系碩士班學位論文
    曾詠恩. (2006). 台灣地區風力發電之潛力分析與生命週期評估, 國立台北大學自然資源與環境管理所碩士論文.
    經濟部能源局. (2019). 我國燃料燃燒二氧化碳排放統計與分析. Retrieved November 18, 2020, from https://www.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?file_id=7272
    經濟部能源局. (2020). 我國燃料燃燒二氧化碳排放統計與分析. Retrieved November 18, 2020, from https://www.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?file_id=7272
    台灣車輛工業同業公會. (2020). 產銷統計. Retrieved March 18, 2021, from https://www.ttvma.org.tw/statistics
    臺灣電力公司. (2020). 臺電系統歷年發購電量. Retrieved November 18, 2020, from https://www.taipower.com.tw/tc/chart/
    環保署. (2015) 國家自定預期貢獻(Intended Nationally Determined Contribution, INDC). Retrieved November 18, 2020, from https://reurl.cc/YWNqQD
    環保署. (2015). 溫 室 氣 體 減 量 及 管 理 法. Retrieved November 18, 2020, from https://www.epa.gov.tw/lp.asp?ctNode=34546&CtUnit=2525&BaseDSD=7&mp
    環保署. (2020). 溫室氣體排放統計. Retrieved November 18, 2020, from https://www.epa.gov.tw/Page/81825C40725F211C/6a1ad12a-4903-4b78-b246-8709e7f00c2b%E3%80%80

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE