簡易檢索 / 詳目顯示

研究生: 李浩生
Li, Hao-Sheng
論文名稱: 搭配高分子保護的腐蝕方式製作空洞性金銀奈米板和選擇性表面增強拉曼散射研究
Etching process and polymer production in production of porous AuAg nano-prism for selectively surface enhanced Raman scattering
指導教授: 孫亦文
Sun, I-Wen
黃志嘉
Huang, Chih-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 85
中文關鍵詞: 拉曼訊號金銀合金表面增強拉曼散射抗菌
外文關鍵詞: Raman signal, AuAg nanoparticle, SERS, antibacterial
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文為搭配高分子保護的腐蝕方式製作空洞性金銀奈米板和選擇性表面增強拉曼散射研究。拉曼散射會受到金屬奈米粒子的構型、金屬比例、表面粗糙程度、合金或者核殼結構等等的原因而受到影響。高分子在實驗當中扮演著表面活性劑的角色,一方面可以穩定奈米分子過度聚集,另一方面可以因高分子對於不同密勒指數面有不同作用力,而造成不同腐蝕程度,說明高分子對於奈米粒子的影響甚大。腐蝕之後,作為模板的銀板會選擇性的不同產生孔洞,孔洞能夠造成電磁場增強。除了電置換反應腐蝕造成孔洞以外,可以利用金的抗酸能力比銀強的特點,用酸去腐蝕多於銀板造成孔洞,這些因素都會造成不同的拉曼訊號放大的結果。

    除此之外,銀奈米粒子的產品常常被使用在除臭抗菌的日常用品上。我們也致力於抗菌的效果,希望能夠在汙水的處理上可以達到去除有害物質的效果且淨化水質。

    In these years, nanoparticles has been widely research because of it’s special optical characteristic, including the tunable in Near-infrared light absorption or SERS effect. SERS effect, a strong strategy for detecting chemical molecules in spite of in low concentration. Molecules has unique vibration and transition mode ,which is also called “fingerprint” ,can be read by Raman spectrum.
    There are several condition can effect the enhancement factor of the nanoparticles, such as the structure or the morphology, the molar ratio in the bimetal material, the surface is rough or not and the kinds of the nanoparticle(core-shell or alloy). Above of these, polymer play an Important role to decided the morphology and shape of the nanoparticle.

    Galvanic replacement is also a key to leading the result of the metal nanoparticle, as the metal nanoparticle exchange there might be a core-shell , alloy or even a hollow structure. These reconstruct process can promote the localized surface plasmonic resonance, also improve the Raman spectrum and easily detect.
    On the other hand, Silver nanoparticles are good at antibacterial. In our research,we find out our products possess a good antibacterial ability. We expect it can be applied on resolving waste water and the industrial pollution.

    中文摘要 ....................................................................................................................... II English Abstract ........................................................................................................... III Extend Abstract ........................................................................................................... IV 誌謝 ........................................................................................................................... VIII 目錄 ............................................................................................................................. IX 圖目錄 ........................................................................................................................ XII 表目錄 ........................................................................................................................ XV 章節一文獻回顧 ............................................................................................................ 1 1.1 拉曼訊號……………………………………………………………..……..1 1.1.1 表面增強拉曼散射 .................................................................................... 1 1.1.2 電磁場增強效應(Electromagnetic Enhancement) .................................... 2 1.1.3 化學增強效應(Chemical Enhancement) ................................................... 2 1.2 金屬奈米粒子的特性……………………………………………..………..2 1.2.1 金屬奈米粒子 ............................................................................................ 2 1.2.2 表面活性劑的選擇 .................................................................................... 3 1.2.3 銀板介紹 .................................................................................................... 4 1.3 電子化學置換反應(Galvanic Replacement)……………………….………4 1.4 SERS的應用與計算方法……………………………………………….…5 1.4.1 核殼結構 .................................................................................................... 6 1.4.2 腐蝕結構 .................................................................................................... 6 1.5 奈米粒子對生物造成的毒性與影響………………………………..……..6 1.5.1 細菌拉曼偵測 ............................................................................................ 7 章節二研究動機 .......................................................................................................... 18 章節三實驗材料與實驗方法 ...................................................................................... 20 3.1使用藥品 ............................................................................................................ 20 3.2使用儀器………………………………………………………………………22 3.3實驗步驟………………………………………………………………………24 3.3.1銀版合成 ......................................................................................................... 24 3.3.2銀版濃縮 ......................................................................................................... 24 3.3.3金銀的合成聚苯乙烯-馬來酸酐(Polystyrene-maleic anhydride) 組別 ....... 25 3.3.4溴化十六烷基三甲銨(Cetyltrimethylammonium bromide)合成金銀合金...25 3.3.5硫辛酸(Lipoic Acid)合成金銀合金 ............................................................... 26 3.3.6表面增強拉曼散射量測…………………………………………………….26 3.3.7細胞存活率/材料毒性實驗(MTT) ................................................................ 27 3.3.7抗菌實驗 ......................................................................................................... 28 章節四結果與討論 ...................................................................................................... 29 4.1 銀板合成與濃縮的討論…………………………………………………….29 4.2 不同金鹽濃度對於構型與光譜差異的探討……………………………….30 4.2.1堆積向位與元素分布 ..................................................................................... 31 4.2.2表面增強拉曼散射結果 ................................................................................. 32 4.2.3表面電性的探討 ............................................................................................. 33 4.2.4 XPS性質檢測 ................................................................................................ 33 4.2.5 FTIR官能基鑑定 ........................................................................................... 34 4.3經過酸腐蝕的材料,其材料性質的探討……………………………………35 4.4改變高分子濃度條件中材料性質的探討……………………………………37 4.5溴化十六烷基三甲銨條件下材料性質的探討………………………………38 4.6硫辛酸條件下合成金銀合金……………………………………………….41 4.7 材料的細胞毒性測試(MTT)…………………………………………………42 4.8材料抗菌實驗…………………………………………………………………43 章節五結論 .................................................................................................................. 75 章節六參考文獻 .......................................................................................................... 76

    1. Moura, C. C.; Tare, R. S.; Oreffo, R. O.; Mahajan, S., Raman spectroscopy and
    coherent anti-Stokes Raman scattering imaging: prospective tools for
    monitoring skeletal cells and skeletal regeneration. J R Soc Interface 2016, 13
    (118).
    2. Guerrini, L.; Graham, D., Molecularly-mediated assemblies of plasmonic
    nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chem
    Soc Rev 2012, 41 (21), 7085-107.
    3. JOSEPH T. H.; ROBERT D. WILLIAMS., Using Resonance RamanSpectroscopy To
    ExamineVibrational Barriers to ElectronTransfer and Electronic Delocalization.
    Acc. Chem. Res. 2001, 34, 808-817.
    4. Rafael C. C.; Benjamin S.M.; Surface-Enhanced Raman Scattering Sensors
    based on Hybrid Nanoparticles. 2011
    5. Jensen, L.; Aikens, C. M.; Schatz, G. C., Electronic structure methods for
    studying surface-enhanced Raman scattering. Chem Soc Rev 2008, 37 (5),
    1061-73.
    6. RICHARD M. C.; MINGQI Z,; LI SUN. Dendrimer-Encapsulated Metal
    Nanoparticles: Synthesis,Characterization, andApplications to Catalysis.
    ACCOUNTS OF CHEMICAL RESEARCH 2001,34(3)
    7. Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assuncao, M.; Rosa,
    J.; Baptista, P. V., Noble metal nanoparticles for biosensing applications. Sensors
    (Basel) 2012, 12 (2), 1657-87.
    8. Adeyemi, O. S.; Sulaiman, F. A., Evaluation of metal nanoparticles for drug
    delivery systems. J Biomed Res 2015, 29 (2), 145-9.
    9. K. Lance Kelly,;Eduardo C,; Lin L. Z.; The Optical Properties of Metal
    Nanoparticles: The Influence of Size, Shape, and DielectricEnvironment. J.
    Phys. Chem. B 2003, 107, 668-677
    10. Anran,L.; Sivan,I.; Ibrahim,A.; Shuzhou.L.,S. Ultrahigh Enhancement of
    Electromagnetic Fields by Exciting Localized withExtended Surface Plasmons
    Nanoparticles. J. Phys. Chem. C, 2015, 119 (33),
    11. Au, L.; Zheng, D.; Zhou, F.; Li, Z. Y.; Li, X.; Xia, Y., A quantitative study on the
    photothermal effect of immuno gold nanocages targeted to breast cancer cells.
    ACS Nano 2008, 2 (8), 1645-52.
    12. Stephan, L.; Mostafa, A.; El-Sayed Spectral Properties and Relaxation
    Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver
    Nanodots and Nanorods. J. Phys. Chem. B, 1999, 103,
    13. Laura,R,L.; Ramo, A. A ,l,P, Zeptomol Detection Through Controlled
    Ultrasensitive Surface-Enhanced Raman Scattering J. AM. CHEM. SOC. 2009,
    131, 4616–4618
    14. Nelayah, J.; Kociak, M.; Stéphan, O.; García de Abajo, F. J.; Tencé, M.;
    Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Colliex, C.,
    Mapping surface plasmons on a single metallic nanoparticle. Nature Physics
    2007, 3 (5), 348-353.

    15. Wang, Y.; Peng, H. C.; Liu, J.; Huang, C. Z.; Xia, Y., Use of reduction rate as a
    quantitative knob for controlling the twin structure and shape of palladium
    nanocrystals. Nano Lett 2015, 15 (2), 1445-50.
    16. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S., Growth and
    form of gold nanorods prepared by seed-mediated, surfactant-directed
    synthesis. Journal of Materials Chemistry 2002, 12 (6), 1765-1770.
    17. Yugang,S.; Younan,X. Shape-Controlled Synthesis of Gold and Silver
    Nanoparticles. Science 298 (5601), 2176-2179.
    18. Gagner, J. E.; Lopez, M. D.; Dordick, J. S.; Siegel, R. W., Effect of gold
    nanoparticle morphology on adsorbed protein structure and function.
    Biomaterials 2011, 32 (29), 7241-52.
    19. Plascencia-Villa, G.; Bahena, D.; Rodriguez, A. R.; Ponce, A.; Jose-Yacaman,
    M., Advanced microscopy of star-shaped gold nanoparticles and their
    adsorption-uptake by macrophages. Metallomics 2013, 5 (3), 242-50.
    20. Zhang, Q.; Li, N.; Goebl, J.; Lu, Z.; Yin, Y., A systematic study of the synthesis
    of silver nanoplates: is citrate a "magic" reagent? J Am Chem Soc 2011, 133
    (46), 18931-9.
    21. Jian,Z.;Mark ,R.; Langille. Photomediated Synthesis of Silver Triangular
    Bipyramids and Prisms: The Effect of pH and BSPP J. AM. CHEM. SOC.
    2010, 132,,12502–12510
    22. Sun, Y.; Wiederrecht, G. P., Surfactantless synthesis of silver nanoplates and
    their application in SERS. Small 2007, 3 (11), 1964-75.
    23. Xiong, Y.; Siekkinen, A. R.; Wang, J.; Yin, Y.; Kim, M. J.; Xia, Y., Synthesis of
    Silver nanoplates at high yields by slowing down the polyol reduction of silver
    nitrate with polyacrylamide. Journal of Materials Chemistry 2007, 17 (25),
    2600.
    24. Zhang, Q.; Hu, Y.; Guo, S.; Goebl, J.; Yin, Y., Seeded growth of uniform Ag
    nanoplates with high aspect ratio and widely tunable surface plasmon bands.
    Nano Lett 2010, 10 (12), 5037-42. (23) Ye, H. Mohar, J. Wang, Q. Catalano, M.
    Kim, M. J. Xia, X. Peroxidase-like properties of Ruthenium nanoframes. Sci.
    Bull.2016, 61, 1739–1745.
    25. Elechiguerra, J. L.; Reyes-Gasga, J.; Yacaman, M. J., The role of twinning in
    shape evolution of anisotropic noble metal nanostructures. Journal of
    Materials Chemistry 2006, 16 (40), 3906.
    26. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y., 25th anniversary article: galvanic
    replacement: a simple and versatile route to hollow nanostructures with
    tunable and well-controlled properties. Adv Mater 2013, 25 (44), 6313-33.
    27. Wei, X.; Fan, Q.; Liu, H.; Bai, Y.; Zhang, L.; Zheng, H.; Yin, Y.; Gao, C.,
    Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced
    Raman scattering. Nanoscale 2016, 8 (34), 15689-95.
    28. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin. Surface Enhanced
    Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys.
    Chem. C 2007, 111, 13794-13803
    29. Rao, V. K.; Radhakrishnan, T. P., Tuning the SERS Response with Ag-Au
    Nanoparticle-Embedded Polymer Thin Film Substrates. ACS Appl Mater
    Interfaces 2015, 7 (23), 12767-73.
    30. Jiji, S. G.; Gopchandran, K. G., Restructuring hollow Au–Ag nanostructures for
    improved SERS activity. Materials Research Express 2016, 3 (10), 105012.
    31. Sivashanmugan, K.; Lee, H.; Syu, C.-H.; Liu, B. H.-C.; Liao, J.-D.,
    Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the
    detection of pesticides residue. Journal of the Taiwan Institute of Chemical
    Engineers 2017, 75, 287-291.
    32. Lai, W.; Zhou, J.; Jia, Z.; Petti, L.; Mormile, P., Ag@Au hexagonal nanorings:
    synthesis, mechanistic analysis and structure-dependent optical characteristics.
    J. Mater. Chem. C 2015, 3 (37), 9726-9733.
    33. Liu, K.; Bai, Y.; Zhang, L.; Yang, Z.; Fan, Q.; Zheng, H.; Yin, Y.; Gao, C.,
    Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots
    for SERS Analysis. Nano Lett 2016, 16 (6), 3675-81.
    34. Yi, Z.; Zhang, J.-b.; Chen, Y.; Chen, S.-j.; Luo, J.-s.; Tang, Y.-j.; Wu, W.-d.; Yi,
    Y.-g., Triangular Au-Ag framework nanostructures prepared by multi-stage
    replacement and their spectral properties. Transactions of Nonferrous Metals
    Society of China 2011, 21 (9), 2049-2055.
    35. Li, J.-M.; Yang, Y.; Qin, D., Hollow nanocubes made of Ag–Au alloys for
    SERS detection with sensitivity of 10−8 M for melamine. J. Mater. Chem. C
    2014, 2
    (46), 9934-9940.
    36. Zhang, W.; Rahmani, M.; Niu, W.; Ravaine, S.; Hong, M.; Lu, X., Tuning
    interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced
    Raman scattering. Sci Rep 2015, 5, 8382.
    37. Zhang, J.; Winget, S. A.; Wu, Y.; Su, D.; Sun, X.; Xie, Z. X.; Qin, D., Ag@Au
    Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed
    Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy.
    ACS Nano 2016, 10 (2), 2607-16.
    38. Garcia-Leis, A.; Torreggiani, A.; Garcia-Ramos, J. V.; Sanchez-Cortes, S.,
    Hollow Au/Ag nanostars displaying broad plasmonic resonance and high
    surface-enhanced Raman sensitivity. Nanoscale 2015, 7 (32), 13629-37.
    39. Chen, D.; Song, Z.; Chen, F.; Huang, J.; Wei, J.; Zhao, Y., Simply controllable
    growth of single crystal plasmonic Au–Ag nano-spines with anisotropic multiple
    sites for highly sensitive and uniform surface-enhanced Raman scattering
    sensing. RSC Adv. 2016, 6 (70), 66056-66065.
    40. Seung,K,C.; Jeong,H, M.; Taeyong,C. Au_Ag Core_Shell Nanoparticle
    Array by Block Copolymer Lithography for Synergistic Broadband Plasmonic
    Properties. ACS Nano 2015, 9(5),5536-5543.
    41. da Silva, A. G. M.; Rodrigues, T. S.; Haigh, S. J.; Camargo, P. H. C., Galvanic
    replacement reaction: recent developments for engineering metal
    nanostructures towards catalytic applications. Chem Commun (Camb) 2017, 53
    (53), 7135-7148.
    42. Son, Y.; Son, Y.; Choi, M.; Ko, M.; Chae, S.; Park, N.; Cho, J., Hollow Silicon
    Nanostructures via the Kirkendall Effect. Nano Lett 2015, 15 (10), 6914-8.
    43. Eshkeiti, A.; Narakathu, B. B.; Reddy, A. S. G.; Moorthi, A.; Atashbar, M. Z.;
    Rebrosova, E.; Rebros, M.; Joyce, M., Detection of heavy metal compounds
    using a novel inkjet printed surface enhanced Raman spectroscopy (SERS)
    substrate. Sensors and Actuators B: Chemical 2012, 171-172, 705-711.
    44. Han, J.; Qian, X.; Wu, Q.; Jha, R.; Duan, J.; Yang, Z.; Maher, K. O.; Nie, S.; Xu,
    C., Novel surface-enhanced Raman scattering-based assays for ultra-sensitive
    detection of human pluripotent stem cells. Biomaterials 2016, 105, 66-76.
    45. Stensberg, M. C.; Wei, Q.; McLamore, E. S.; Porterfield, D. M.; Wei, A.;
    Sepulveda, M. S., Toxicological studies on silver nanoparticles: challenges and
    opportunities in assessment, monitoring and imaging. Nanomedicine (Lond)
    2011, 6 (5), 879-98.
    46. Unger, C.; Luck, C., Inhibitory effects of silver ions on Legionella pneumophila
    grown on agar, intracellular in Acanthamoeba castellanii and in artificial biofilms
    JAppl Microbiol 2012, 112 (6), 1212-9.
    47. P. V. AshaRani . Cytotoxicity and Genotoxicity of Silver Nanoparticles in
    Human
    CellsNanoparticles. ACS Nano 2009, 3 (2), 279-290.
    48. C. Carlson, ;S. M. Hussain.; A. M. Schrand.;L. K. Braydich-Stolle.;K. L. Hess.;
    R. L. Jones.;J. J. Schlager.. Unique Cellular Interaction of Silver Nanoparticles:
    Size-Dependent Generation of Reactive Oxygen Species. J. Phys. Chem. B 2008,
    112, 13608–13619
    49. Cho, H.; Sung, J.; Song, K.; Kim, J.; Ji, J.; Lee, J.; Ryu, H.; Ahn, K.; Yu, I.,
    Genotoxicity of Silver Nanoparticles in Lung Cells of Sprague Dawley Rats after
    12 Weeks of Inhalation Exposure. Toxics 2013, 1 (1), 36-45.
    50. Lee, S.; Hong, J. W.; Lee, S. U.; Lee, Y. W.; Han, S. W., The controlled synthesis
    of plasmonic nanoparticle clusters as efficient surface-enhanced Raman
    scattering platforms. Chem Commun (Camb) 2015, 51 (42), 8793-6.
    51. Giorgis, F.; Descrovi, E.; Chiodoni, A.; Froner, E.; Scarpa, M.; Venturello, A.;
    Geobaldo, F., Porous silicon as efficient surface enhanced Raman scattering
    (SERS) substrate. Applied Surface Science 2008, 254 (22), 7494-7497.
    52. Pincella, F.; Song, Y.; Ochiai, T.; Isozaki, K.; Sakamoto, K.; Miki, K.,
    Square-centimeter-scale 2D-arrays of Au@Ag core–shell nanoparticles towards
    practical SERS substrates with enhancement factor of 10 7. Chemical Physics
    Letters 2014, 605-606, 115-120.
    53. Hong, S.; Li, X., Optimal Size of Gold Nanoparticles for Surface-Enhanced
    Raman Spectroscopy under Different Conditions. Journal of Nanomaterials
    2013, 2013, 1-9.
    54. Srichan, C.; Ekpanyapong, M.; Horprathum, M.; Eiamchai, P.; Nuntawong, N.;
    Phokharatkul, D.; Danvirutai, P.; Bohez, E.; Wisitsoraat, A.; Tuantranont, A.,
    Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based
    Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles
    as SERS substrate. Sci Rep 2016, 6, 23733.
    55. Sang ,W,H.l Yunsoo,K.; Kwan,K. Dodecanethiol-Derivatized Au/Ag
    Bimetallic Nanoparticles:TEM, UV/VIS, XPS, and FTIR Analysis. JOURNAL
    OF COLLOID AND INTERFACE SCIENCE 208, 272–278 (1998)
    56. Soltani, N.; Saion, E.; Erfani, M.; Rezaee, K.; Bahmanrokh, G.; Drummen, G. P.; Bahrami, A.; Hussein, M. Z., Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles sythesized by mcrowave iradiation. Int J Mol Sci 2012, 13 (10), 12412-27.
    57. Hasanzadeh, R.; Moghadam, P. N.; Samadi, N.; Asri-Rezaei, S., Removal of
    heavy-metal ions from aqueous solution with nanochelating resins based on
    poly(styrene-alt-maleic anhydride). Journal of Applied Polymer Science 2013,
    127 (4), 2875-2883.
    58. Ovchinnikov,O.V.; Evtukhova, A.V.; Kondratenko, T. S.; Smirnov, M. S.;
    Khokhlov,V.Y.; Erina,O.V., Manifestation of intermolecular interactions in FTIR
    spectra of methylene blue molecules. Vibrational Spectroscopy 2016, 86,
    181-189.
    59. Chinelatto, M. A.; Agnelli, J. A. M.; Canevarolo, S. V., Synthesis and
    Characterization of Copolymers from Hindered Amines and Vinyl Monomers.
    Polímeros Ciência e Tecnologia 2014, 24 (1), 30-36.
    60. Huang, C.-C.; Lin, P.-H.; Lee, C.-W., OFF/ON galvanic replacement reaction for
    preparing divergent AuAg nano-hollows as a SERS-visualized drug delivery
    system in targeted photodynamic therapy. RSC Adv. 2016, 6 (69), 64494-64498.
    61. Monga, A.; Pal, B., Morphological and physicochemical properties of Ag–Au
    binary nanocomposites prepared using different surfactant capped Ag
    nanoparticles. RSC Adv. 2015, 5 (50), 39954-39963.
    62. Jiji, S. G.; Gopchandran, K. G., Au-Ag hollow nanostructures with tunable
    SERS properties. Spectrochim Acta A Mol Biomol Spectrosc 2017, 171, 499-506.
    63. Ghosal, S.; Shbeeb, A.; Hemminger, J. C., Surface segregation of bromine in
    bromide doped NaCl: Implications for the seasonal variations in Arctic ozone.
    Geophysical Research Letters 2000, 27 (13), 1879-1882.
    65. Xiao, G.-N.; Man, S.-Q., Surface-enhanced Raman scattering of methylene blue
    adsorbed on cap-shaped silver nanoparticles. Chemical Physics Letters 2007,
    447 (4-6), 305-309.
    66. Xiaoge,H.; Tie,W.; Liang,W.; Shaojun,D. Surface-Enhanced Raman Scattering
    of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with
    Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition.
    J. Phys. Chem. C 2007, 111, 6962-6969
    67. Rodriguez-Torres Mdel, P.; Diaz-Torres, L. A.; Romero-Servin, S., Heparin
    assisted photochemical synthesis of gold nanoparticles and their performance
    as SERS substrates. Int J Mol Sci 2014, 15 (10), 19239-52.
    68. Michaela,H.;Michael, K.; Stephan, Steven,S.; Petra,Rosch. Analysis of
    single blood cells for CSF diagnostics via a combination of fluorescence staining and micro-Raman spectroscopy. Analyst, 2008,133, 1416-1423
    69. Christian N.; K, L, Martinez.; R, Alvarez. Surface enhanced Raman scattering spectroscopy for detection and identification of microbial pathogens isolated from human serum. Sensing and Bio-Sensing Research 2016, 20
    70. D, Yang.; H, Zhou.; C, Haisch. Reproducible E. coli detection based on label-free SERS and mapping. Talanta, 2016, 457.

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE