| 研究生: |
李浩生 Li, Hao-Sheng |
|---|---|
| 論文名稱: |
搭配高分子保護的腐蝕方式製作空洞性金銀奈米板和選擇性表面增強拉曼散射研究 Etching process and polymer production in production of porous AuAg nano-prism for selectively surface enhanced Raman scattering |
| 指導教授: |
孫亦文
Sun, I-Wen 黃志嘉 Huang, Chih-Chia |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 拉曼訊號 、金銀合金 、表面增強拉曼散射 、抗菌 |
| 外文關鍵詞: | Raman signal, AuAg nanoparticle, SERS, antibacterial |
| 相關次數: | 點閱:81 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文為搭配高分子保護的腐蝕方式製作空洞性金銀奈米板和選擇性表面增強拉曼散射研究。拉曼散射會受到金屬奈米粒子的構型、金屬比例、表面粗糙程度、合金或者核殼結構等等的原因而受到影響。高分子在實驗當中扮演著表面活性劑的角色,一方面可以穩定奈米分子過度聚集,另一方面可以因高分子對於不同密勒指數面有不同作用力,而造成不同腐蝕程度,說明高分子對於奈米粒子的影響甚大。腐蝕之後,作為模板的銀板會選擇性的不同產生孔洞,孔洞能夠造成電磁場增強。除了電置換反應腐蝕造成孔洞以外,可以利用金的抗酸能力比銀強的特點,用酸去腐蝕多於銀板造成孔洞,這些因素都會造成不同的拉曼訊號放大的結果。
除此之外,銀奈米粒子的產品常常被使用在除臭抗菌的日常用品上。我們也致力於抗菌的效果,希望能夠在汙水的處理上可以達到去除有害物質的效果且淨化水質。
In these years, nanoparticles has been widely research because of it’s special optical characteristic, including the tunable in Near-infrared light absorption or SERS effect. SERS effect, a strong strategy for detecting chemical molecules in spite of in low concentration. Molecules has unique vibration and transition mode ,which is also called “fingerprint” ,can be read by Raman spectrum.
There are several condition can effect the enhancement factor of the nanoparticles, such as the structure or the morphology, the molar ratio in the bimetal material, the surface is rough or not and the kinds of the nanoparticle(core-shell or alloy). Above of these, polymer play an Important role to decided the morphology and shape of the nanoparticle.
Galvanic replacement is also a key to leading the result of the metal nanoparticle, as the metal nanoparticle exchange there might be a core-shell , alloy or even a hollow structure. These reconstruct process can promote the localized surface plasmonic resonance, also improve the Raman spectrum and easily detect.
On the other hand, Silver nanoparticles are good at antibacterial. In our research,we find out our products possess a good antibacterial ability. We expect it can be applied on resolving waste water and the industrial pollution.
1. Moura, C. C.; Tare, R. S.; Oreffo, R. O.; Mahajan, S., Raman spectroscopy and
coherent anti-Stokes Raman scattering imaging: prospective tools for
monitoring skeletal cells and skeletal regeneration. J R Soc Interface 2016, 13
(118).
2. Guerrini, L.; Graham, D., Molecularly-mediated assemblies of plasmonic
nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chem
Soc Rev 2012, 41 (21), 7085-107.
3. JOSEPH T. H.; ROBERT D. WILLIAMS., Using Resonance RamanSpectroscopy To
ExamineVibrational Barriers to ElectronTransfer and Electronic Delocalization.
Acc. Chem. Res. 2001, 34, 808-817.
4. Rafael C. C.; Benjamin S.M.; Surface-Enhanced Raman Scattering Sensors
based on Hybrid Nanoparticles. 2011
5. Jensen, L.; Aikens, C. M.; Schatz, G. C., Electronic structure methods for
studying surface-enhanced Raman scattering. Chem Soc Rev 2008, 37 (5),
1061-73.
6. RICHARD M. C.; MINGQI Z,; LI SUN. Dendrimer-Encapsulated Metal
Nanoparticles: Synthesis,Characterization, andApplications to Catalysis.
ACCOUNTS OF CHEMICAL RESEARCH 2001,34(3)
7. Doria, G.; Conde, J.; Veigas, B.; Giestas, L.; Almeida, C.; Assuncao, M.; Rosa,
J.; Baptista, P. V., Noble metal nanoparticles for biosensing applications. Sensors
(Basel) 2012, 12 (2), 1657-87.
8. Adeyemi, O. S.; Sulaiman, F. A., Evaluation of metal nanoparticles for drug
delivery systems. J Biomed Res 2015, 29 (2), 145-9.
9. K. Lance Kelly,;Eduardo C,; Lin L. Z.; The Optical Properties of Metal
Nanoparticles: The Influence of Size, Shape, and DielectricEnvironment. J.
Phys. Chem. B 2003, 107, 668-677
10. Anran,L.; Sivan,I.; Ibrahim,A.; Shuzhou.L.,S. Ultrahigh Enhancement of
Electromagnetic Fields by Exciting Localized withExtended Surface Plasmons
Nanoparticles. J. Phys. Chem. C, 2015, 119 (33),
11. Au, L.; Zheng, D.; Zhou, F.; Li, Z. Y.; Li, X.; Xia, Y., A quantitative study on the
photothermal effect of immuno gold nanocages targeted to breast cancer cells.
ACS Nano 2008, 2 (8), 1645-52.
12. Stephan, L.; Mostafa, A.; El-Sayed Spectral Properties and Relaxation
Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver
Nanodots and Nanorods. J. Phys. Chem. B, 1999, 103,
13. Laura,R,L.; Ramo, A. A ,l,P, Zeptomol Detection Through Controlled
Ultrasensitive Surface-Enhanced Raman Scattering J. AM. CHEM. SOC. 2009,
131, 4616–4618
14. Nelayah, J.; Kociak, M.; Stéphan, O.; García de Abajo, F. J.; Tencé, M.;
Henrard, L.; Taverna, D.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Colliex, C.,
Mapping surface plasmons on a single metallic nanoparticle. Nature Physics
2007, 3 (5), 348-353.
15. Wang, Y.; Peng, H. C.; Liu, J.; Huang, C. Z.; Xia, Y., Use of reduction rate as a
quantitative knob for controlling the twin structure and shape of palladium
nanocrystals. Nano Lett 2015, 15 (2), 1445-50.
16. Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S., Growth and
form of gold nanorods prepared by seed-mediated, surfactant-directed
synthesis. Journal of Materials Chemistry 2002, 12 (6), 1765-1770.
17. Yugang,S.; Younan,X. Shape-Controlled Synthesis of Gold and Silver
Nanoparticles. Science 298 (5601), 2176-2179.
18. Gagner, J. E.; Lopez, M. D.; Dordick, J. S.; Siegel, R. W., Effect of gold
nanoparticle morphology on adsorbed protein structure and function.
Biomaterials 2011, 32 (29), 7241-52.
19. Plascencia-Villa, G.; Bahena, D.; Rodriguez, A. R.; Ponce, A.; Jose-Yacaman,
M., Advanced microscopy of star-shaped gold nanoparticles and their
adsorption-uptake by macrophages. Metallomics 2013, 5 (3), 242-50.
20. Zhang, Q.; Li, N.; Goebl, J.; Lu, Z.; Yin, Y., A systematic study of the synthesis
of silver nanoplates: is citrate a "magic" reagent? J Am Chem Soc 2011, 133
(46), 18931-9.
21. Jian,Z.;Mark ,R.; Langille. Photomediated Synthesis of Silver Triangular
Bipyramids and Prisms: The Effect of pH and BSPP J. AM. CHEM. SOC.
2010, 132,,12502–12510
22. Sun, Y.; Wiederrecht, G. P., Surfactantless synthesis of silver nanoplates and
their application in SERS. Small 2007, 3 (11), 1964-75.
23. Xiong, Y.; Siekkinen, A. R.; Wang, J.; Yin, Y.; Kim, M. J.; Xia, Y., Synthesis of
Silver nanoplates at high yields by slowing down the polyol reduction of silver
nitrate with polyacrylamide. Journal of Materials Chemistry 2007, 17 (25),
2600.
24. Zhang, Q.; Hu, Y.; Guo, S.; Goebl, J.; Yin, Y., Seeded growth of uniform Ag
nanoplates with high aspect ratio and widely tunable surface plasmon bands.
Nano Lett 2010, 10 (12), 5037-42. (23) Ye, H. Mohar, J. Wang, Q. Catalano, M.
Kim, M. J. Xia, X. Peroxidase-like properties of Ruthenium nanoframes. Sci.
Bull.2016, 61, 1739–1745.
25. Elechiguerra, J. L.; Reyes-Gasga, J.; Yacaman, M. J., The role of twinning in
shape evolution of anisotropic noble metal nanostructures. Journal of
Materials Chemistry 2006, 16 (40), 3906.
26. Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y., 25th anniversary article: galvanic
replacement: a simple and versatile route to hollow nanostructures with
tunable and well-controlled properties. Adv Mater 2013, 25 (44), 6313-33.
27. Wei, X.; Fan, Q.; Liu, H.; Bai, Y.; Zhang, L.; Zheng, H.; Yin, Y.; Gao, C.,
Holey Au-Ag alloy nanoplates with built-in hotspots for surface-enhanced
Raman scattering. Nanoscale 2016, 8 (34), 15689-95.
28. E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin. Surface Enhanced
Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys.
Chem. C 2007, 111, 13794-13803
29. Rao, V. K.; Radhakrishnan, T. P., Tuning the SERS Response with Ag-Au
Nanoparticle-Embedded Polymer Thin Film Substrates. ACS Appl Mater
Interfaces 2015, 7 (23), 12767-73.
30. Jiji, S. G.; Gopchandran, K. G., Restructuring hollow Au–Ag nanostructures for
improved SERS activity. Materials Research Express 2016, 3 (10), 105012.
31. Sivashanmugan, K.; Lee, H.; Syu, C.-H.; Liu, B. H.-C.; Liao, J.-D.,
Nanoplasmonic Au/Ag/Au nanorod arrays as SERS-active substrate for the
detection of pesticides residue. Journal of the Taiwan Institute of Chemical
Engineers 2017, 75, 287-291.
32. Lai, W.; Zhou, J.; Jia, Z.; Petti, L.; Mormile, P., Ag@Au hexagonal nanorings:
synthesis, mechanistic analysis and structure-dependent optical characteristics.
J. Mater. Chem. C 2015, 3 (37), 9726-9733.
33. Liu, K.; Bai, Y.; Zhang, L.; Yang, Z.; Fan, Q.; Zheng, H.; Yin, Y.; Gao, C.,
Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots
for SERS Analysis. Nano Lett 2016, 16 (6), 3675-81.
34. Yi, Z.; Zhang, J.-b.; Chen, Y.; Chen, S.-j.; Luo, J.-s.; Tang, Y.-j.; Wu, W.-d.; Yi,
Y.-g., Triangular Au-Ag framework nanostructures prepared by multi-stage
replacement and their spectral properties. Transactions of Nonferrous Metals
Society of China 2011, 21 (9), 2049-2055.
35. Li, J.-M.; Yang, Y.; Qin, D., Hollow nanocubes made of Ag–Au alloys for
SERS detection with sensitivity of 10−8 M for melamine. J. Mater. Chem. C
2014, 2
(46), 9934-9940.
36. Zhang, W.; Rahmani, M.; Niu, W.; Ravaine, S.; Hong, M.; Lu, X., Tuning
interior nanogaps of double-shelled Au/Ag nanoboxes for surface-enhanced
Raman scattering. Sci Rep 2015, 5, 8382.
37. Zhang, J.; Winget, S. A.; Wu, Y.; Su, D.; Sun, X.; Xie, Z. X.; Qin, D., Ag@Au
Concave Cuboctahedra: A Unique Probe for Monitoring Au-Catalyzed
Reduction and Oxidation Reactions by Surface-Enhanced Raman Spectroscopy.
ACS Nano 2016, 10 (2), 2607-16.
38. Garcia-Leis, A.; Torreggiani, A.; Garcia-Ramos, J. V.; Sanchez-Cortes, S.,
Hollow Au/Ag nanostars displaying broad plasmonic resonance and high
surface-enhanced Raman sensitivity. Nanoscale 2015, 7 (32), 13629-37.
39. Chen, D.; Song, Z.; Chen, F.; Huang, J.; Wei, J.; Zhao, Y., Simply controllable
growth of single crystal plasmonic Au–Ag nano-spines with anisotropic multiple
sites for highly sensitive and uniform surface-enhanced Raman scattering
sensing. RSC Adv. 2016, 6 (70), 66056-66065.
40. Seung,K,C.; Jeong,H, M.; Taeyong,C. Au_Ag Core_Shell Nanoparticle
Array by Block Copolymer Lithography for Synergistic Broadband Plasmonic
Properties. ACS Nano 2015, 9(5),5536-5543.
41. da Silva, A. G. M.; Rodrigues, T. S.; Haigh, S. J.; Camargo, P. H. C., Galvanic
replacement reaction: recent developments for engineering metal
nanostructures towards catalytic applications. Chem Commun (Camb) 2017, 53
(53), 7135-7148.
42. Son, Y.; Son, Y.; Choi, M.; Ko, M.; Chae, S.; Park, N.; Cho, J., Hollow Silicon
Nanostructures via the Kirkendall Effect. Nano Lett 2015, 15 (10), 6914-8.
43. Eshkeiti, A.; Narakathu, B. B.; Reddy, A. S. G.; Moorthi, A.; Atashbar, M. Z.;
Rebrosova, E.; Rebros, M.; Joyce, M., Detection of heavy metal compounds
using a novel inkjet printed surface enhanced Raman spectroscopy (SERS)
substrate. Sensors and Actuators B: Chemical 2012, 171-172, 705-711.
44. Han, J.; Qian, X.; Wu, Q.; Jha, R.; Duan, J.; Yang, Z.; Maher, K. O.; Nie, S.; Xu,
C., Novel surface-enhanced Raman scattering-based assays for ultra-sensitive
detection of human pluripotent stem cells. Biomaterials 2016, 105, 66-76.
45. Stensberg, M. C.; Wei, Q.; McLamore, E. S.; Porterfield, D. M.; Wei, A.;
Sepulveda, M. S., Toxicological studies on silver nanoparticles: challenges and
opportunities in assessment, monitoring and imaging. Nanomedicine (Lond)
2011, 6 (5), 879-98.
46. Unger, C.; Luck, C., Inhibitory effects of silver ions on Legionella pneumophila
grown on agar, intracellular in Acanthamoeba castellanii and in artificial biofilms
JAppl Microbiol 2012, 112 (6), 1212-9.
47. P. V. AshaRani . Cytotoxicity and Genotoxicity of Silver Nanoparticles in
Human
CellsNanoparticles. ACS Nano 2009, 3 (2), 279-290.
48. C. Carlson, ;S. M. Hussain.; A. M. Schrand.;L. K. Braydich-Stolle.;K. L. Hess.;
R. L. Jones.;J. J. Schlager.. Unique Cellular Interaction of Silver Nanoparticles:
Size-Dependent Generation of Reactive Oxygen Species. J. Phys. Chem. B 2008,
112, 13608–13619
49. Cho, H.; Sung, J.; Song, K.; Kim, J.; Ji, J.; Lee, J.; Ryu, H.; Ahn, K.; Yu, I.,
Genotoxicity of Silver Nanoparticles in Lung Cells of Sprague Dawley Rats after
12 Weeks of Inhalation Exposure. Toxics 2013, 1 (1), 36-45.
50. Lee, S.; Hong, J. W.; Lee, S. U.; Lee, Y. W.; Han, S. W., The controlled synthesis
of plasmonic nanoparticle clusters as efficient surface-enhanced Raman
scattering platforms. Chem Commun (Camb) 2015, 51 (42), 8793-6.
51. Giorgis, F.; Descrovi, E.; Chiodoni, A.; Froner, E.; Scarpa, M.; Venturello, A.;
Geobaldo, F., Porous silicon as efficient surface enhanced Raman scattering
(SERS) substrate. Applied Surface Science 2008, 254 (22), 7494-7497.
52. Pincella, F.; Song, Y.; Ochiai, T.; Isozaki, K.; Sakamoto, K.; Miki, K.,
Square-centimeter-scale 2D-arrays of Au@Ag core–shell nanoparticles towards
practical SERS substrates with enhancement factor of 10 7. Chemical Physics
Letters 2014, 605-606, 115-120.
53. Hong, S.; Li, X., Optimal Size of Gold Nanoparticles for Surface-Enhanced
Raman Spectroscopy under Different Conditions. Journal of Nanomaterials
2013, 2013, 1-9.
54. Srichan, C.; Ekpanyapong, M.; Horprathum, M.; Eiamchai, P.; Nuntawong, N.;
Phokharatkul, D.; Danvirutai, P.; Bohez, E.; Wisitsoraat, A.; Tuantranont, A.,
Highly-Sensitive Surface-Enhanced Raman Spectroscopy (SERS)-based
Chemical Sensor using 3D Graphene Foam Decorated with Silver Nanoparticles
as SERS substrate. Sci Rep 2016, 6, 23733.
55. Sang ,W,H.l Yunsoo,K.; Kwan,K. Dodecanethiol-Derivatized Au/Ag
Bimetallic Nanoparticles:TEM, UV/VIS, XPS, and FTIR Analysis. JOURNAL
OF COLLOID AND INTERFACE SCIENCE 208, 272–278 (1998)
56. Soltani, N.; Saion, E.; Erfani, M.; Rezaee, K.; Bahmanrokh, G.; Drummen, G. P.; Bahrami, A.; Hussein, M. Z., Influence of the polyvinyl pyrrolidone concentration on particle size and dispersion of ZnS nanoparticles sythesized by mcrowave iradiation. Int J Mol Sci 2012, 13 (10), 12412-27.
57. Hasanzadeh, R.; Moghadam, P. N.; Samadi, N.; Asri-Rezaei, S., Removal of
heavy-metal ions from aqueous solution with nanochelating resins based on
poly(styrene-alt-maleic anhydride). Journal of Applied Polymer Science 2013,
127 (4), 2875-2883.
58. Ovchinnikov,O.V.; Evtukhova, A.V.; Kondratenko, T. S.; Smirnov, M. S.;
Khokhlov,V.Y.; Erina,O.V., Manifestation of intermolecular interactions in FTIR
spectra of methylene blue molecules. Vibrational Spectroscopy 2016, 86,
181-189.
59. Chinelatto, M. A.; Agnelli, J. A. M.; Canevarolo, S. V., Synthesis and
Characterization of Copolymers from Hindered Amines and Vinyl Monomers.
Polímeros Ciência e Tecnologia 2014, 24 (1), 30-36.
60. Huang, C.-C.; Lin, P.-H.; Lee, C.-W., OFF/ON galvanic replacement reaction for
preparing divergent AuAg nano-hollows as a SERS-visualized drug delivery
system in targeted photodynamic therapy. RSC Adv. 2016, 6 (69), 64494-64498.
61. Monga, A.; Pal, B., Morphological and physicochemical properties of Ag–Au
binary nanocomposites prepared using different surfactant capped Ag
nanoparticles. RSC Adv. 2015, 5 (50), 39954-39963.
62. Jiji, S. G.; Gopchandran, K. G., Au-Ag hollow nanostructures with tunable
SERS properties. Spectrochim Acta A Mol Biomol Spectrosc 2017, 171, 499-506.
63. Ghosal, S.; Shbeeb, A.; Hemminger, J. C., Surface segregation of bromine in
bromide doped NaCl: Implications for the seasonal variations in Arctic ozone.
Geophysical Research Letters 2000, 27 (13), 1879-1882.
65. Xiao, G.-N.; Man, S.-Q., Surface-enhanced Raman scattering of methylene blue
adsorbed on cap-shaped silver nanoparticles. Chemical Physics Letters 2007,
447 (4-6), 305-309.
66. Xiaoge,H.; Tie,W.; Liang,W.; Shaojun,D. Surface-Enhanced Raman Scattering
of 4-Aminothiophenol Self-Assembled Monolayers in Sandwich Structure with
Nanoparticle Shape Dependence: Off-Surface Plasmon Resonance Condition.
J. Phys. Chem. C 2007, 111, 6962-6969
67. Rodriguez-Torres Mdel, P.; Diaz-Torres, L. A.; Romero-Servin, S., Heparin
assisted photochemical synthesis of gold nanoparticles and their performance
as SERS substrates. Int J Mol Sci 2014, 15 (10), 19239-52.
68. Michaela,H.;Michael, K.; Stephan, Steven,S.; Petra,Rosch. Analysis of
single blood cells for CSF diagnostics via a combination of fluorescence staining and micro-Raman spectroscopy. Analyst, 2008,133, 1416-1423
69. Christian N.; K, L, Martinez.; R, Alvarez. Surface enhanced Raman scattering spectroscopy for detection and identification of microbial pathogens isolated from human serum. Sensing and Bio-Sensing Research 2016, 20
70. D, Yang.; H, Zhou.; C, Haisch. Reproducible E. coli detection based on label-free SERS and mapping. Talanta, 2016, 457.
校內:2022-01-01公開