| 研究生: |
吳純寧 Wu, Chun-Ning |
|---|---|
| 論文名稱: |
具奈米金屬網與奈米抗反射結構於三五族太陽能電池特性改善之研究 Investigation of performance improvement for III-V compound solar cells with nanomesh electrode and nanostructured antireflection coating |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 奈米金屬網 、二氧化鈦奈米結構 、InGaP/InGaAs/Ge三接面太陽能電池 |
| 外文關鍵詞: | InGaP/InGaAs/Ge compound triple-junction solar cell, nanomesh electrode, TiO2 nanostructured |
| 相關次數: | 點閱:82 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用雷射干涉微影技術製作奈米金屬網電極於InGaP/InGaAs/Ge三接面太陽能電池。相較於傳統指叉狀電極,利用雷射干涉微影技術製作金屬網可以有效降低金屬電極間距使串聯電阻變小且可以有效降低金屬遮蔽率,最終提高InGaP/InGaAs/Ge三接面太陽能電池之轉換效率。利用奈米金屬網取代傳統指叉狀電極於InGaP/InGaAs/Ge三接面太陽能電池,當奈米金屬網之金屬線間距為100 μm時,其元件之短路電流密度由17.3 mA/cm2提升至18.9 mA/cm2,轉換效率由30.84%提升至34.87%,而金屬遮蔽率由7.50%下降至0.66%,串聯電阻由9.1 Ω-cm2降低至7.9 Ω-cm2。為進一步提升InGaP/InGaAs/Ge三接面太陽能電池之轉換效率並改善傳統的抗反射膜利用單層或雙層膜堆疊設計以達到特定波長之反射率降低為零,但在其它波段之反射率卻會提升至10%以上之缺點。本論文利用雷射干涉微影技術藉由犧牲層製作二維陣列,並搭配電子束斜向蒸鍍技術成長二氧化鈦(TiO2)奈米結構之抗反射層,此奈米結構具有粗化及漸變折射率之效果,可以改善試片窗口層與空氣因折射率差而導致過多光反射,藉以取代傳統抗反射膜。利用二氧化鈦奈米結構取代傳統抗反射膜作為InGaP/InGaAs/Ge三接面太陽能電池之抗反射層,當二氧化鈦奈米結構週期為1 μm時,其結構之平均反射率約為1.095%,等效折射率約為1.79。此外,將二氧化鈦奈米結構搭配奈米金屬網電極製作於InGaP/InGaAs/Ge三接面太陽能電池,元件之短路電流密度由18.90 mA/cm2及提升至19.51 mA/cm2,轉換效率由34.87%提升至36.02%。
In this study, the laser interference photolithography technique and oblique evaporation method by electron beam evaporation system were used to fabricate the nanomesh electrode and the TiO2 nanostructured as the antireflection coating on the InGaP/InGaAs/Ge compound triple-junction solar cell. By using the nanomesh electrode with the metal line interval of 100 μm, the conversion efficiency of the InGaP/InGaAs/Ge triple-junction solar cells improved to 34.87% compared with 30.84% of the solar cells with the conventional bus-bar metal electrode. To further improve the conversion efficiency of the solar cells and improve the drawback of the conventional antireflection coating, the TiO2 nanostructured substituted as the antireflection coating. By using the TiO2 nanostructured with the period of 1 μm, the average reflectivity and the effective refractive index were 1.095% and 1.79, respectively. The conversion efficiency of the InGaP/InGaAs/Ge triple-junction solar cells with TiO2 nanostructured was improved to 36.02% compared with 34.87% of the conventional antireflection coating.
[1]戴寶通、鄭晃忠, “太陽能電池技術手冊,” 台灣電子材料與元件協會發行出版, 2008.
[2]華健、吳怡萱, “再生能源概論,” 五南圖書出版公司, 2008.
[3]C. Azar, K. Lindgren, and B. A. Andersson, “Global energy scenarios meeting stringent CO2 constraints-cost-effective fuel choices in the transportation sector,” Energy Policy, vol. 31, pp. 961-976, 2003.
[4]M. Yamaguchi, “III-V compound multi-junction solar cells: present and future”, Sol. Energy Mater. Sol. Cells, vol. 75, pp. 261-269, 2003.
[5]翁敏航, “太陽能電池―原理、元件、材料、製程與檢測技術,” 東華書局, 2010.
[6]莊嘉琛, “太陽能工程-太陽能電池篇,” 全華科技圖書股份有限公司, 2008.
[7]C. E. Valdivia, E. Desfonds, D. Masson, S. Fafard, A. Carlson, J. Cook, T. J. Hall, and K. Hinzer, “Optimization of antireflection coating design for multi-junction solar cells and concentrator systems,” Proc. SPIE, vol. 7009, pp. 709915-1-709915-10, 2008.
[8]D. J. Friedman, J. F. Geisz, A. G. Norman, M. W. Wanlass, and S. R. Kurtz, “0.7-eV GaInAs junction for a GaInP/GaAs/GaInAs/GaInAs four-junction solar cell,” IEEE Photovoltaic Energy Conference, vol. 1, pp. 598-602, 2006.
[9]M. Stan, D. Aiken, B. Cho, A. Cornfeld, V. Ley, P. Patel, P. Sharps, and T. Varghese, “High-efficiency quadruple junction solar cells using OMVPE with inverted metamorphic device structures,” J. Cryst. Growth, vol. 312, pp. 1370-1374, 2010.
[10]K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1308-1321, 2006.
[11]E. Havard, T. Camps, V. Bardinal, L. Salvagnac, C. Armand, C. Fontaine, and S. Pinaud, “Effect of thermal annealing on the electrical properties of indium tin oxide (ITO) contact on Be-doped GaAs for optoelectronic applications,” Semicond. Sci. Technol., vol. 23, pp. 035001-1-035001-5, 2008.
[12]J. D. Hwang, C. C. Lin, and W. L Chen, “Electrical properties of sputtered-indium tin oxide film contacts on n-type GaN,” J. Appl. Phys., vol. 100, pp. 044908-1-044908-5, 2006.
[13]S. M. Sze and M. K. Lee, “Devices physics and technology, 3rd ed,” John Wiley & Sons, Inc., 2012.
[14]D. A. Neamen, “Semiconductor physics and devices,” McGraw-Hill Companies Inc., 2003.
[15]C. H. Choi and C. J. Kim, “Fabrication of a dense array of tall nanostructures over a large sample area with sidewall profile and tip sharpness control,” Nanotech., vol. 17, pp. 5326-5333, 2006.
[16]J. D. Boor, N. Geyer, U. Gösele, and V. Schmidt, “Three-beam interference lithograph: upgrading a Lloyd’s interferometer for single-exposure hexagonal patterning,” Opt. Lett., vol. 34, pp. 1783-1785, 2009.
[17]K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotech., vol. 11, pp. 161-164, 2000.
[18]W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett., vol. 8, pp. 584-586, 1983.
[19]D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells, vol. 64, pp. 393-404, 2000.
[20]J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt., vol. 41, pp. 3075-3083, 2002.
[21]李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 2012.
[22]J. L. Lee, Y. T. Kim, and J. Y. Lee, “Microstructural evidence on direct contact of Au/Ge/Ni/Au ohmic metals to InGaAs channel in pseudomorphic high electron mobility transistor with undoped cap layer,” Appl. Phys. Lett., vol. 73, pp. 1670-1672, 1998.
[23]J. Morais, T. A. Fazan, R. Landers, R. G. Pereira, E. A. S. Sato, and W. Carvalho Jr, “Effect of rapid thermal annealing on the microstructure and electrical characteristics of Au/Ni/Au/Ge/Ni multilayers deposited on n-type InGaAs,” J. Vac. Sci. Technol. B, vol. 15, pp. 1983-1986, 1997.
[24]K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, and T. Fuyuki, “Evaluation of InGaP/InGaAs/Ge triple-junction solar cell and optimization of solar cell’s structure focusing on series resistance for high-efficiency concentrator photovoltaic systems,” Sol. Energy Mater. Sol. Cells, vol. 90, pp. 1308-1321, 2006.
[25]D. Pysch, A. Mette, and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells,” Sol. Energy Mater. Sol. Cells, vol. 91, pp. 1698-1706, 2007.
[26]S. Daliento, L. Lancellotti, “3D Analysis of the performances degradation caused by series resistance in concentrator solar cells,” Sol. Energy, vol. 84, pp. 44-50, 2010.
[27]M. S. Kim, B. G. Kim, and J. Kim, “Effective variables to control the fill factor of organic photovoltaic cells,” ACS Appl. Mater. Interfaces, vol. 1, pp. 1264-1269, 2009.
[28]N. J. Ekins-Daukes, K. W. J. Barnham, J. P. Connolly, J. S. Roberts, J. C. Clark, G. Hill, and M. Mazzer, “Strain-balanced GaAsP/InGaAs quantum well solar cells,” Appl. Phys. Lett., vol. 75, pp. 4195-4197, 1999.
[29]S. Dongaonkar, J. D. Servaites, G. M. Ford, S. Loser, J. Moore, R. M. Gelfand, H. Mohseni, H. W. Hillhouse, R. Agrawal, M. A. Ratner, T. J. Marks, M. S. Lundstrom, and M. A. Alam, “Universality of non-ohmic shunt leakage in thin-film solar cells,” J. Appl. Phys., vol. 108, pp. 124509-1124509-10, 2010.
校內:2021-08-16公開