簡易檢索 / 詳目顯示

研究生: 張瑋庭
Chang, Wei-ting
論文名稱: 陰道鞭毛蟲與細胞型變研究
The study of cytopathogenesis by Trichomonas vaginalis in vitro
指導教授: 辛致煒
Shin, Jyh-wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 陰道鞭毛蟲感染症接觸性毒殺作用細胞病變共同培養子宮頸癌陰道鞭毛蟲
外文關鍵詞: contact-dependent cytotoxicity, cytopathogenesis, co-culture, trichomoniasis, cervical cancer, Trichomonas vaginalis
相關次數: 點閱:136下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 陰道鞭毛蟲 (Trichomonas vaginalis, 30236 (JH31A, USA))主要寄生於人類的泌尿生殖道,是一種厭氧性的單細胞原生寄生蟲,是目前最常見的非病毒性的性接觸傳染疾病,受到感染的女性會引起陰道鞭毛蟲感染症 (trichomoniasis)。子宮頸癌是常見的婦女癌症之一,有研究調查指出陰道鞭毛蟲感染後會增加女性子宮頸癌的發生率,故推測女性子宮頸癌的生成與陰道鞭毛蟲感染症的細胞反覆發炎有關。研究也有指出感染陰道鞭毛蟲後的病患受到人類後天免疫缺乏病毒(HIV-1)感染的機會亦提高1.5倍。先前已有部分研究將陰道鞭毛蟲與不同的宿主細胞(fibroblast、MDCK…等)進行共同培養並且觀察,顯示陰道鞭毛蟲會黏附在不同的細胞表面,並以接觸性毒殺作用導致細胞脫落、受傷或死亡,但是對於研究陰道鞭毛蟲與子宮頸癌的發生並不是一個很好的模式。本實驗主要是想透過共同培養的模式觀察陰道鞭毛蟲是否會對人類子宮頸上皮細胞造成病變。先將陰道鞭毛蟲與子宮頸上皮細胞(Z172)馴化至相同環境培養液後進行共同培養;並以曠時攝影的方式觀察到隨著時間的增加,Z172細胞被陰道鞭毛蟲攻擊後開始內縮、細胞變圓,最後整片脫落等現象。進一步將影像細部分析統計,發現受到攻擊的細胞發生細胞脫落佔70%、類細胞凋亡約佔8%、類細胞壞死佔18%,以及RT-PCR的結果顯示,隨著共同培養的時間增加,陰道鞭毛蟲的黏附因子相關基因AP65、AP65-1與紅素氧還蛋白(rubrerythrin)都有表現增加的情形。而在人類子宮頸上皮細胞(Z172)的變化則是利用Oligo GEArray® Human Common Cytokines Superoarray 進行分析,發現隨著共同培養的時間增加,細胞中與細胞激素相關的基因如:BMP2、GDF 15、IL-8、IL-1α、IL-1β、ATP6AP1、VEGFB有增加的趨勢,從Cytokines Superoarray的量化結果中可得知BMP2上升1.75倍、GDF 15上升2.65倍、IL-8上升1.53倍、IL-1α上升3.25倍、IL-1β上升1.40倍、ATP6AP1上升1. 50倍、VEGFB上升1.63倍,而IL-8、IL-1α、IL-1β這些基因在炎症與免疫反應中均扮演著重要的角色,對於寄生蟲與宿主間的關係有很大的影響,而這些基因的上升在其他寄生蟲中也有相似的表現。由實驗結果可知,共同培養的時間增加,細胞型態的改變是透過陰道鞭毛蟲的黏附也就是接觸性毒殺作用所造成細胞病變,同時也可能以透過細胞激素的表現改變進而使得細胞受到傷害,但是對於陰道鞭毛蟲是如何導致子宮頸癌的發生,詳細的機制未來還需要做更進一步的研究與探討。

    Trichomonas vaginalis (ATCC 30236 (JH31A)), a protozoan parasite of the urogenital-vaginal tract, is the causative agent of trichomoniasis, the most common non-viral sexually transmitted disease (STD) in human. Although asymptomatic infection by T. vaginalis is common, multiple symptoms and pathologies can arise in women, including vaginitis, urethritis, prostatitis, low-birth weight infants and preterm delivery that cause of infertility. T. vaginalis infection was found to contribute the risk of cervical cancer, as determined by crude estimates and after adjustment for potential confounding effects. The attendant clump of this protozoan will destruct the epithelial cell and induce pathogenesis by contact-dependent cytotoxicty. In this study, T. vaginalis and human cervical epithelium cell (Z172) were raised under the same environment and with same culture medium. During T. vaginalis attached Z172, cell became round shape then shrinkage, part of cells dead, and disruption after co-cultured 10 hours respectively. Time-lapse recording and flow cytometry were used for the studies of the host and parasite interaction. Z172 interaction with T. vaginalis, there are 70% of cell with disruption, 8% with apoptosis-like and 18% with necrosis-like morphology after 10 hours. RT-PCR results showed that the expression of adhesion protein 65 of protozoa was increased after the interaction of host and parasite. Cell cytotoxicity was decreased after 6 hours interaction and increased 10 hours, and the expression of rubrerythrin in T. vaginalis was the same pattern as the host cell. In human genes by using Oligo GEArray® Human Common Cytokines SuperArray, we found that seven of inflammatory genes were unregulated in contrast with control such as BMP2 and GDF15 and IL-8 and IL-1α and IL-1β and ATP6AP1 and VEGFB;we found the genes were up 1.75 times of BMP2, 2.65 times of GDF 15, 1.53 times of IL-8, 3.25 times of IL-1α, 1.40 times of IL-1β, 1.50 times of ATP6AP1 and 1.63 times of VEGFB. Finally, in this study the results of experiments showed that contact-dependent cytotoxicity of Z172 by T. vaginalis. The cytopathogenic effect was increases along with the time during Z172 attacked by T. vaginalis and morphological mainly is disruption. The contact-dependent cytotoxicty change of the human cervical cell derived by the mechanical or chemical effect by the protozoan will be studied in the future.

    致謝 ………………………………………………………………… 3 目錄 ………………………………………………………………… 5 圖目錄 ……………………………………………………………… 6 表目錄 ……………………………………………………………… 9 中文摘要 …………………………………………………………… 10 英文目錄 …………………………………………………………… 12 序論 ………………………………………………………………… 14 研究目的 …………………………………………………………… 20 材料與方法 ………………………………………………………… 21 結果 ………………………………………………………………… 33 討論 ………………………………………………………………… 40 參考文獻 …………………………………………………………… 42 實驗圖表結果 ……………………………………………………… 48

    Alderete, J.F., Benchimol, M., Lehker, M.W., and Crouch, M.L. (2002). The complex fibronectin--Trichomonas vaginalis interactions and Trichomonosis. Parasitology international 51, 285-292.
    Alderete, J.F., Nguyen, J., Mundodi, V., and Lehker, M.W. (2004). Heme-iron increases levels of AP65-mediated adherence by Trichomonas vaginalis. Microbial pathogenesis 36, 263-271.
    Carlton, J.M., Hirt, R.P., Silva, J.C., Delcher, A.L., Schatz, M., Zhao, Q., Wortman, J.R., Bidwell, S.L., Alsmark, U.C., Besteiro, S., et al. (2007). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science (New York, NY 315, 207-212.
    Cohen, M.S., Hoffman, I.F., Royce, R.A., Kazembe, P., Dyer, J.R., Daly, C.C., Zimba, D., Vernazza, P.L., Maida, M., Fiscus, S.A., et al. (1997). Reduction of concentration of HIV-1 in semen after treatment of urethritis: implications for prevention of sexual transmission of HIV-1. AIDSCAP Malawi Research Group. Lancet 349, 1868-1873.
    Cotch, M.F., Pastorek, J.G., 2nd, Nugent, R.P., Hillier, S.L., Gibbs, R.S., Martin, D.H., Eschenbach, D.A., Edelman, R., Carey, J.C., Regan, J.A., et al. (1997). Trichomonas vaginalis associated with low birth weight and preterm delivery. The Vaginal Infections and Prematurity Study Group. Sexually transmitted diseases 24, 353-360.
    Crouch, M.L., Benchimol, M., and Alderete, J.F. (2001). Binding of fibronectin by Trichomonas vaginalis is influenced by iron and calcium. Microbial pathogenesis 31, 131-144.
    da Costa, R.F., de Souza, W., Benchimol, M., Alderete, J.F., and Morgado-Diaz, J.A. (2005). Trichomonas vaginalis perturbs the junctional complex in epithelial cells. Cell research 15, 704-716.
    De Jesus, J.B., Cuervo, P., Junqueira, M., Britto, C., Silva-Filho, F.C., Soares, M.J., Cupolillo, E., Fernandes, O., and Domont, G.B. (2007). A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis. Proteomics 7, 1961-1972.
    Demes, P., Gombosova, A., Valent, M., Fabusova, H., and Janoska, A. (1988a). Fewer Trichomonas vaginalis organisms in vaginas of infected women during menstruation. Genitourinary medicine 64, 22-24.
    Demes, P., Gombosova, A., Valent, M., Janoska, A., Fabusova, H., and Petrenko, M. (1988b). Differential susceptibility of fresh Trichomonas vaginalis isolates to complement in menstrual blood and cervical mucus. Genitourinary medicine 64, 176-179.
    Dessi, D., Delogu, G., Emonte, E., Catania, M.R., Fiori, P.L., and Rappelli, P. (2005). Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection. Infection and immunity 73, 1180-1186.
    Diamond, L.S., Clark, C.G., and Cunnick, C.C. (1995). YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis. The Journal of eukaryotic microbiology 42, 277-278.
    Eguchi, Y., Shimizu, S., and Tsujimoto, Y. (1997). Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer research 57, 1835-1840.
    Ellis, J.E., Yarlett, N., Cole, D., Humphreys, M.J., and Lloyd, D. (1994). Antioxidant defences in the microaerophilic protozoan Trichomonas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology (Reading, England) 140 ( Pt 9), 2489-2494.
    Embley, T.M., and Martin, W. (2006). Eukaryotic evolution, changes and challenges. Nature 440, 623-630.
    Everse, J., and Hsia, N. (1997). The toxicities of native and modified hemoglobins. Free radical biology & medicine 22, 1075-1099.
    Fiori, P.L., Rappelli, P., and Addis, M.F. (1999). The flagellated parasite Trichomonas vaginalis: new insights into cytopathogenicity mechanisms. Microbes and infection / Institut Pasteur 1, 149-156.
    Fiori, P.L., Rappelli, P., Addis, M.F., Mannu, F., and Cappuccinelli, P. (1997). Contact-dependent disruption of the host cell membrane skeleton induced by Trichomonas vaginalis. Infection and immunity 65, 5142-5148.
    Garcia, A.F., Chang, T.H., Benchimol, M., Klumpp, D.J., Lehker, M.W., and Alderete, J.F. (2003). Iron and contact with host cells induce expression of adhesins on surface of Trichomonas vaginalis. Molecular microbiology 47, 1207-1224.
    Gilbert, R.O., Elia, G., Beach, D.H., Klaessig, S., and Singh, B.N. (2000). Cytopathogenic effect of Trichomonas vaginalis on human vaginal epithelial cells cultured in vitro. Infection and immunity 68, 4200-4206.
    Gorrell, T.E. (1985). Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis. Journal of bacteriology 161, 1228-1230.
    Grodstein, F., Goldman, M.B., and Cramer, D.W. (1993). Relation of tubal infertility to history of sexually transmitted diseases. American journal of epidemiology 137, 577-584.
    Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program. Nucleic Acids Symposium 41, 95-98.
    Heath, J.P. (1981). Behaviour and pathogenicity of Trichomonas vaginalis in epithelial cell cultures: a study by light and scanning electron microscopy. The British journal of venereal diseases 57, 106-117.
    Hentze, M.W., and Kuhn, L.C. (1996). Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proceedings of the National Academy of Sciences of the United States of America 93, 8175-8182.
    Honigberg, B.M., and King, V.M. (1964). Structure of Trichomonas Vaginalis Donn'e. The Journal of parasitology 50, 345-364.
    Koch, S., and Nusrat, A. (2009). Dynamic regulation of epithelial cell fate and barrier function by intercellular junctions. Annals of the New York Academy of Sciences 1165, 220-227.
    Kucknoor, A., Mundodi, V., and Alderete, J.F. (2005a). Trichomonas vaginalis adherence mediates differential gene expression in human vaginal epithelial cells. Cellular microbiology 7, 887-897.
    Kucknoor, A.S., Mundodi, V., and Alderete, J.F. (2005b). Adherence to human vaginal epithelial cells signals for increased expression of Trichomonas vaginalis genes. Infection and immunity 73, 6472-6478.
    Kucknoor, A.S., Mundodi, V., and Alderete, J.F. (2007). The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cellular microbiology 9, 2586-2597.
    Lehker, M.W., and Alderete, J.F. (1992). Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Molecular microbiology 6, 123-132.
    Lehker, M.W., Arroyo, R., and Alderete, J.F. (1991). The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis. The Journal of experimental medicine 174, 311-318.
    Leipuviene, R., and Theil, E.C. (2007). The family of iron responsive RNA structures regulated by changes in cellular iron and oxygen. Cell Mol Life Sci 64, 2945-2955.
    Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P. (1997). Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. The Journal of experimental medicine 185, 1481-1486.
    McClelland, R.S., Sangare, L., Hassan, W.M., Lavreys, L., Mandaliya, K., Kiarie, J., Ndinya-Achola, J., Jaoko, W., and Baeten, J.M. (2007). Infection with Trichomonas vaginalis increases the risk of HIV-1 acquisition. The Journal of infectious diseases 195, 698-702.
    O'Neill, L.A., and Greene, C. (1998). Signal transduction pathways activated by the IL-1 receptor family: ancient signaling machinery in mammals, insects, and plants. Journal of leukocyte biology 63, 650-657.
    Paget, T.A., and Lloyd, D. (1990). Trichomonas vaginalis requires traces of oxygen and high concentrations of carbon dioxide for optimal growth. Molecular and biochemical parasitology 41, 65-72.
    Pereira-Neves, A., Ribeiro, K.C., and Benchimol, M. (2003). Pseudocysts in trichomonads--new insights. Protist 154, 313-329.
    Peterson, K.M., and Alderete, J.F. (1984). Iron uptake and increased intracellular enzyme activity follow host lactoferrin binding by Trichomonas vaginalis receptors. The Journal of experimental medicine 160, 398-410.
    Petrin, D., Delgaty, K., Bhatt, R., and Garber, G. (1998). Clinical and microbiological aspects of Trichomonas vaginalis. Clinical microbiology reviews 11, 300-317.
    Rasmussen, S.E., Nielsen, M.H., Lind, I., and Rhodes, J.M. (1986). Morphological studies of the cytotoxicity of Trichomonas vaginalis to normal human vaginal epithelial cells in vitro. Genitourinary medicine 62, 240-246.
    Rendon-Maldonado, J., Espinosa-Cantellano, M., Soler, C., Torres, J.V., and Martinez-Palomo, A. (2003). Trichomonas vaginalis: in vitro attachment and internalization of HIV-1 and HIV-1-infected lymphocytes. The Journal of eukaryotic microbiology 50, 43-48.
    Ryu, J.S., Kang, J.H., Jung, S.Y., Shin, M.H., Kim, J.M., Park, H., and Min, D.Y. (2004). Production of interleukin-8 by human neutrophils stimulated with Trichomonas vaginalis. Infection and immunity 72, 1326-1332.
    Schwebke, J.R., and Burgess, D. (2004). Trichomoniasis. Clinical microbiology reviews 17, 794-803, table of contents.
    Shaio, M.F., Lin, P.R., Liu, J.Y., and Tang, K.D. (1994). Monocyte-derived interleukin-8 involved in the recruitment of neutrophils induced by Trichomonas vaginalis infection. The Journal of infectious diseases 170, 1638-1640.
    Soboll, G., Shen, L., and Wira, C.R. (2006). Expression of Toll-like receptors (TLR) and responsiveness to TLR agonists by polarized mouse uterine epithelial cells in culture. Biology of reproduction 75, 131-139.
    Solano-Gonzalez, E., Burrola-Barraza, E., Leon-Sicairos, C., Avila-Gonzalez, L., Gutierrez-Escolano, L., Ortega-Lopez, J., and Arroyo, R. (2007). The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element. FEBS letters 581, 2919-2928.
    Sommer, U., Costello, C.E., Hayes, G.R., Beach, D.H., Gilbert, R.O., Lucas, J.J., and Singh, B.N. (2005). Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. The Journal of biological chemistry 280, 23853-23860.
    Sorvillo, F., Kovacs, A., Kerndt, P., Stek, A., Muderspach, L., and Sanchez-Keeland, L. (1998). Risk factors for trichomoniasis among women with human immunodeficiency virus (HIV) infection at a public clinic in Los Angeles County, California: implications for HIV prevention. The American journal of tropical medicine and hygiene 58, 495-500.
    Steinbuchel, A., and Muller, M. (1986). Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Molecular and biochemical parasitology 20, 57-65.
    Tsai, C.D., Liu, H.W., and Tai, J.H. (2002). Characterization of an iron-responsive promoter in the protozoan pathogen Trichomonas vaginalis. The Journal of biological chemistry 277, 5153-5162.
    Viikki, M., Pukkala, E., Nieminen, P., and Hakama, M. (2000). Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta oncologica (Stockholm, Sweden) 39, 71-75.
    Warton, A., and Honigberg, B.M. (1979). Structure of trichomonads as revealed by scanning electron microscopy. The Journal of protozoology 26, 56-62.
    Wawer, M.J., Sewankambo, N.K., Serwadda, D., Quinn, T.C., Paxton, L.A., Kiwanuka, N., Wabwire-Mangen, F., Li, C., Lutalo, T., Nalugoda, F., et al. (1999). Control of sexually transmitted diseases for AIDS prevention in Uganda: a randomised community trial. Rakai Project Study Group. Lancet 353, 525-535.
    Weinstock, H., Berman, S., and Cates, W., Jr. (2004). Sexually transmitted diseases among American youth: incidence and prevalence estimates, 2000. Perspectives on sexual and reproductive health 36, 6-10.
    Williams, K., Lowe, P.N., and Leadlay, P.F. (1987). Purification and characterization of pyruvate: ferredoxin oxidoreductase from the anaerobic protozoon Trichomonas vaginalis. The Biochemical journal 246, 529-536.

    下載圖示 校內:2012-08-22公開
    校外:2014-08-22公開
    QR CODE