簡易檢索 / 詳目顯示

研究生: 曾詩閔
Tseng, Shih-Ming
論文名稱: 氧化鋅/二硫化錫複合材料應用於可調式抗UV光及抗藍光性質之研究
The investigation of ZnO/SnS2 composites for tunable UV and blue light shielding properties
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 140
中文關鍵詞: 氧化鋅二硫化錫複合材料異質介面可調式能隙
外文關鍵詞: ZnO/SnS2 composites, precipitation method, hydrothermal method, tunable UV and blue light shielding
相關次數: 點閱:133下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為達到可調式光譜,使其能應用於不同抗藍光和抗UV光條件之元件,並滿足製程簡易、低成本且低毒性之材料,因此,本研究選用良好生物相容性、對環境友善且具有高度UV吸收效果之寬能隙半導體氧化鋅(3.37 eV),與窄能隙之半導體二硫化錫(2.1 eV),觀察其兩者是否能形成可調式能隙之複合材料。
    本研究第一部分利用物理法製備混合粉末。首先利用沉澱法製備三種不同靜置時間之氧化鋅,實驗結果顯示:靜置可使氧化鋅粉末由球狀轉變成花狀,當氧化鋅形成花狀形貌時,其能隙有下降之趨勢。為了達到可調式光譜之效果,選用花狀氧化鋅,並與利用水熱法製備之二硫化錫進行物理混合。由吸收及穿透光譜可知,因物理法無法使氧化鋅及二硫化錫緊密接觸,僅是二硫化錫堆積於花狀氧化鋅表面,使兩者形成少量且結構鬆散之異質介面,因此無法產生可調式能隙之情形。
    在第二部分,利用沉澱法在花狀氧化鋅製程中加入不同莫耳比例之二硫化錫,由晶體結構分析得知,靜置時間過長將產生副產物。靜置8小時之複合材料在形貌上隨著二硫化錫含量改變而有所變化,且氧化鋅與二硫化錫之接觸面積增加,並於微結構分析可看出異質介面的存在。在元素分析上,證實了氧化鋅與二硫化錫形成複合材料後,異質介面產生而出現電子流動現象。另外藉由光致發光與化學鍵結等實驗,可知隨著二硫化錫含量變化,近邊帶放射有紅移之情形,且複合材料中的氧缺陷有上升的趨勢﹐此與形成花狀之氧化鋅相同,推測由於O2-摻雜進二硫化錫,使氧化鋅產生氧空缺。在光學分析上可觀察到,隨著氧化鋅與二硫化錫莫爾比例的不同,其在光譜上呈現紅移現象,且能隙隨著二硫化錫增加而有下降的趨勢,此與氧缺陷和形成之穩固異質介面有所對應。實驗結果顯示以化學法合成之粉末將有助於發展可調式能隙之材料,應用於抗不同藍光波長之光學元件。

    ZnO/SnS2 composites were successfully synthesized by simple precipitation, and using hydrothermal method to produce SnS2. The XRD patterns of ZnO/SnS2 composites show the characteristic peaks of ZnO and SnS2 without impurity. With the shift of the slow scan XRD, it can speculate than the O2- were doped into SnS2, and the oxygen vacancies appeared in ZnO. With the ratio of SnS2 increase, the flower-like composites gradually disappear into nanoparticles, which show in SEM, and shows the heterojunction between ZnO and SnS2 by TEM, XPS and PL analyses. Compare to ZnO, which can only absorb UV light, these ZnO/SnS2 composites have the absorb spectra over the wavelength range of 390 nm to 480 nm, which include UV and blue light region, and the absorption band range can be tunable by adjusting ZnO/SnS2 molar ratio and show the red shift situation. This work provides an effective strategy for the synthesis of ZnO/SnS2 composites with low cost and low toxicity, which may be considered as a promising application in the field of tunable UV and blue light shielding in the optical applications.

    摘要 I Extended Abstract III 致謝 IX 總目錄 XI 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章 文獻回顧 4 2-1 UV光與藍光 4 2-2 氧化鋅之特性 8 2-2-1 晶體結構 8 2-2-2 物理性質 8 2-2-3 氧化鋅的本質缺陷 15 2-2-4 合成方法與成長機制 16 2-3 二硫化錫之特性 20 2-3-1 性質及應用 20 2-3-2 二硫化錫之性質及應用 21 2-3-3合成方法與成長機制 25 2-4 可調式能隙光譜 31 2-4-1 能隙與光譜的關係 31 2-4-2 離子摻雜 34 2-4-3 異質接合結構 39 2-4-4 材料形貌、表面粗糙度、大小控制 43 第三章 實驗方法與分析設備 48 3-1實驗流程 48 3-1-1 氧化鋅合成 48 3-1-2 二硫化錫合成 48 3-1-3 物理法混合氧化鋅及二硫化錫 49 3-1-4 氧化鋅/二硫化錫複合材料合成 49 3-1-5 製備ZnO與SnS2 之起始原料 57 3-2 材料特性分析 58 3-2-1晶體結構性質分析 58 3-2-2表面形貌分析 58 3-2-3晶體繞射及微結構分析 59 3-2-4元素成分與化學鍵結分析 59 3-2-5光學性質分析 60 第四章 結果與討論 62 4-1靜置時間對氧化鋅之形貌與光學性質的影響 62 4-1-1氧化鋅晶體結構 62 4-1-2表面形貌 65 4-1-3光學性質 68 4-2物理法混合ZnO與SnS2之特性 71 4-2-1晶體結構 71 4-2-2表面形貌與微結構 74 4-2-3成分與化學鍵結 83 4-2-4缺陷分析 86 4-2-5光學性質 88 4-3 沉澱法製備之ZnO/SnS2複合材料 93 4-3-1晶體結構 93 4-3-2表面形貌與微結構 101 4-3-3成分與化學鍵結 109 4-3-4缺陷分析 117 4-3-5光學性質 120 第五章 結論 131 參考文獻 132

    1. Sarkany, R., Sun protection strategies. Medicine, 2017. 45(7): p. 444-447.
    2. Young, A.R., J. Claveau, and A.B. Rossi, Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. Journal of the American Academy of Dermatology, 2017. 76(3): p. S100-S109.
    3. Kielbassa, C., L. Roza, and B. Epe, Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis, 1997. 18(4): p. 811-816.
    4. Algvere, P.V., J. Marshall, and S. Seregard, Age‐related maculopathy and the impact of blue light hazard. Acta Ophthalmologica Scandinavica, 2006. 84(1): p. 4-15.
    5. Yu, Z.-L., et al., Neuroglobin–a potential biological marker of retinal damage induced by LED light. Neuroscience, 2014. 270: p. 158-167.
    6. Fan, S.M.-Y., et al., External light activates hair follicle stem cells through eyes via an ipRGC–SCN–sympathetic neural pathway. Proceedings of the National Academy of Sciences, 2018. 115(29): p. E6880-E6889.
    7. Seol, M., et al., Novel nanowire array based highly efficient quantum dot sensitized solar cell. Chemical Communications, 2010. 46(30): p. 5521-5523.
    8. Ansari, S.A., et al., Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm. Nanoscale, 2013. 5(19): p. 9238-9246.
    9. Wang, Z.L., Zinc oxide nanostructures: growth, properties and applications. Journal of physics: condensed matter, 2004. 16(25): p. R829.
    10. Kind, H., et al., Nanowire ultraviolet photodetectors and optical switches. Advanced materials, 2002. 14(2): p. 158-160.
    11. Willander, M., et al., Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology, 2009. 20(33): p. 332001.
    12. Kołodziejczak-Radzimska, A. and T. Jesionowski, Zinc oxide—from synthesis to application: a review. Materials, 2014. 7(4): p. 2833-2881.
    13. Thangaraju, B. and P. Kaliannan, Spray pyrolytic deposition and characterization of SnS and SnS2 thin films. Journal of Physics D: Applied Physics, 2000. 33(9): p. 1054.
    14. Huang, P.-C., et al., Synthesis and characteristics of layered SnS2 nanostructures via hot injection method. Journal of Crystal Growth, 2017. 468: p. 162-168.
    15. Zhou, T., et al., Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. Acs Nano, 2014. 8(8): p. 8323-8333.
    16. Huang, P.-C., et al., SnSx (x= 1, 2) nanocrystals as effective catalysts for photoelectrochemical water splitting. Catalysts, 2017. 7(9): p. 252.
    17. Han, C., et al., Transparent epoxy–ZnO/CdS nanocomposites with tunable UV and blue light-shielding capabilities. Journal of Materials Chemistry C, 2015. 3(19): p. 5065-5072.
    18. Li, Y.-Q., Y. Yang, and S.-Y. Fu, Photo-stabilization properties of transparent inorganic UV-filter/epoxy nanocomposites. Composites science and technology, 2007. 67(15-16): p. 3465-3471.
    19. Pandey, J.K., et al., An overview on the degradability of polymer nanocomposites. Polymer degradation and stability, 2005. 88(2): p. 234-250.
    20. Makama, A., et al., Microwave-assisted synthesis of porous ZnO/SnS2 heterojunction and its enhanced photoactivity for water purification. Journal of Nanomaterials, 2015. 2015.
    21. 赵晓华, et al., ZnO/SnS2 复合物的 NO2 气敏性能. 硅酸盐学报, 2018(10): p. 12.
    22. Espitia, P.J.P., et al., Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and bioprocess technology, 2012. 5(5): p. 1447-1464.
    23. Lee, J.-B., et al., Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications. Thin Solid Films, 2001. 398: p. 641-646.
    24. Lin, Y.-C., C. Hong, and H. Chuang, Fabrication and analysis of ZnO thin film bulk acoustic resonators. Applied Surface Science, 2008. 254(13): p. 3780-3786.
    25. Ma, Z., et al., Cu-doped ZnO electronic structure and optical properties studied by first-principles calculations and experiments. Materials, 2019. 12(1): p. 196.
    26. Li, Y., et al., High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology, 2008. 20(4): p. 045501.
    27. Kang, H.S., et al., Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. Journal of Applied Physics, 2004. 95(3): p. 1246-1250.
    28. Zhang, Y., et al., Biomedical applications of zinc oxide nanomaterials. Current molecular medicine, 2013. 13(10): p. 1633-1645.
    29. Yao, T. and S.-K. Hong, Oxide and nitride semiconductors: Processing, properties, and applications. Vol. 12. 2009: Springer Science & Business Media.
    30. Norton, D.P., et al., ZnO: growth, doping & processing. Materials today, 2004. 7(6): p. 34-40.
    31. Wei, M., et al., Surface work function of transparent conductive ZnO films. Energy Procedia, 2012. 16: p. 76-80.
    32. Sundaram, K. and A. Khan, Work function determination of zinc oxide films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1997. 15(2): p. 428-430.
    33. Zhao, M.-H., Z.-L. Wang, and S.X. Mao, Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters, 2004. 4(4): p. 587-590.
    34. Christman, J., et al., Piezoelectric measurements with atomic force microscopy. MRS Online Proceedings Library Archive, 1998. 541.
    35. Selim, F., et al., Nature of native defects in ZnO. Physical review letters, 2007. 99(8): p. 085502.
    36. Brahma, S., et al., Self-assembled ZnO nanoparticles on ZnO microsheet: ultrafast synthesis and tunable photoluminescence properties. Journal of Physics D: Applied Physics, 2015. 48(22): p. 225305.
    37. Yue, S., et al., Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol–gel method. Materials Letters, 2013. 98: p. 246-249.
    38. Chen, D., X. Jiao, and G. Cheng, Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Communications, 1999. 113(6): p. 363-366.
    39. Lanje, A.S., et al., Low temperature dielectric studies of zinc oxide (ZnO) nanoparticles prepared by precipitation method. Advanced Powder Technology, 2013. 24(1): p. 331-335.
    40. Janotti, A. and C.G. Van de Walle, Native point defects in ZnO. Physical Review B, 2007. 76(16): p. 165202.
    41. Kadantsev, E.S. and P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid State Communications, 2012. 152(10): p. 909-913.
    42. Zhou, M., X.W.D. Lou, and Y. Xie, Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities. Nano Today, 2013. 8(6): p. 598-618.
    43. Bickley, R., et al., Relative proportions of rutile and pseudo-brookite phases in the Fe (III)-TiO2 system at elevated temperature. Materials chemistry and physics, 1997. 51(1): p. 47-53.
    44. Jiang, J., et al., Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. Journal of the American Chemical Society, 2012. 134(10): p. 4473-4476.
    45. Xu, H., W. Wang, and W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. The Journal of Physical Chemistry B, 2006. 110(28): p. 13829-13834.
    46. Chen, D., et al., Graphene-like layered metal dichalcogenide/graphene composites: synthesis and applications in energy storage and conversion. Materials Today, 2014. 17(4): p. 184-193.
    47. Tan, F., et al., Photovoltaic effect of tin disulfide with nanocrystalline/amorphous blended phases. Solid state communications, 2010. 150(1-2): p. 58-61.
    48. Umar, A., et al., Visible-light-driven photocatalytic and chemical sensing properties of SnS2 nanoflakes. Talanta, 2013. 114: p. 183-190.
    49. Wu, Y.-P., E. Rahm, and R. Holze, Carbon anode materials for lithium ion batteries. Journal of Power Sources, 2003. 114(2): p. 228-236.
    50. Shi, W., et al., Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnology, 2006. 17(12): p. 2918.
    51. Wang, L., et al., High-rate performance of SnS2 nanoplates without carbon-coating as anode material for lithium ion batteries. Electrochimica Acta, 2013. 112: p. 439-447.
    52. Burton, L.A. and A. Walsh, Phase stability of the earth-abundant tin sulfides SnS, SnS2, and Sn2S3. The Journal of Physical Chemistry C, 2012. 116(45): p. 24262-24267.
    53. Hu, X., et al., Phase-controlled synthesis and photocatalytic properties of SnS, SnS2 and SnS/SnS2 heterostructure nanocrystals. Materials Research Bulletin, 2013. 48(6): p. 2325-2332.
    54. Su, G., et al., Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano letters, 2015. 15(1): p. 506-513.
    55. Sun, Y., et al., Freestanding tin disulfide single‐layers realizing efficient visible‐light water splitting. Angewandte Chemie International Edition, 2012. 51(35): p. 8727-8731.
    56. Zhang, Y.C., et al., One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr (VI). Applied Catalysis B: Environmental, 2014. 144: p. 730-738.
    57. Liang, X., Transition from tubes to sheets—a comparison of the properties and applications of carbon nanotubes and graphene, in Nanotube Superfiber Materials. 2014, Elsevier. p. 519-568.
    58. Kim, D.W., et al., Synthesis and photovoltaic property of fine and uniform Zn 2 SnO 4 nanoparticles. Nanoscale, 2012. 4(2): p. 557-562.
    59. Urbach, F., The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Physical Review, 1953. 92(5): p. 1324.
    60. Schubert, E.F., Light-Emitting Diodes (2006). 2006: E. Fred Schubert.
    61. Sernelius, B.E., et al., Band-gap tailoring of ZnO by means of heavy Al doping. Physical Review B, 1988. 37(17): p. 10244.
    62. Singh, J., et al., Synthesis, band-gap tuning, structural and optical investigations of Mg doped ZnO nanowires. CrystEngComm, 2012. 14(18): p. 5898-5904.
    63. Kamarulzaman, N., M.F. Kasim, and R. Rusdi, Band gap narrowing and widening of ZnO nanostructures and doped materials. Nanoscale research letters, 2015. 10(1): p. 346.
    64. Abram, R., G. Rees, and B. Wilson, Heavily doped semiconductors and devices. Advances in Physics, 1978. 27(6): p. 799-892.
    65. Mikhailova, M. and A. Titkov, Type II heterojunctions in the GaInAsSb/GaSb system. Semiconductor science and technology, 1994. 9(7): p. 1279.
    66. Yang, C., et al., Preparation and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst SnSx/TiO2. Journal of Solid State Chemistry, 2009. 182(4): p. 807-812.
    67. Jayswal, S. and R.S. Moirangthem, Construction of a solar spectrum active SnS/ZnO p–n heterojunction as a highly efficient photocatalyst: the effect of the sensitization process on its performance. New Journal of Chemistry, 2018. 42(16): p. 13689-13701.
    68. Neshchimenko, V., et al., Optical radiation stability of ZnO hollow particles. Nanoscale, 2018. 10(47): p. 22335-22347.
    69. Goh, E., X. Xu, and P. McCormick, Effect of particle size on the UV absorbance of zinc oxide nanoparticles. Scripta Materialia, 2014. 78: p. 49-52.
    70. Zgura, I., et al., Wet chemical synthesis of ZnO-CdS composites and their photocatalytic activity. Materials Research Bulletin, 2018. 99: p. 174-181.
    71. Li, X., et al., Study of oxygen vacancies′ influence on the lattice parameter in ZnO thin film. Materials Letters, 2012. 85: p. 25-28.
    72. Carp, O., et al., Facile, high yield ultrasound mediated protocol for ZnO hierarchical structures synthesis: Formation mechanism, optical and photocatalytic properties. Ultrasonics sonochemistry, 2017. 36: p. 326-335.
    73. Lyklema, J., Fundamentals of interface and colloid science: soft colloids. Vol. 5. 2005: Elsevier.
    74. Vinod, R., et al., Enhanced UV emission from ZnO nanoflowers synthesized by the hydrothermal process. Journal of Physics D: Applied Physics, 2012. 45(42): p. 425103.
    75. Han, Z., et al., Synthesis and photocatalytic application of oriented hierarchical ZnO flower-rod architectures. Journal of hazardous materials, 2012. 217: p. 100-106.
    76. Hezam, A., et al., Heterogeneous growth mechanism of ZnO nanostructures and the effects of their morphology on optical and photocatalytic properties. CrystEngComm, 2017. 19(24): p. 3299-3312.
    77. Ko, S.H., et al., Nanoforest of hydrothermally grown hierarchical ZnO nanowires for a high efficiency dye-sensitized solar cell. Nano letters, 2011. 11(2): p. 666-671.
    78. Zhang, J., et al., SnS2 nanosheets coupled with 2D ultrathin MoS2 nanolayers as face-to-face 2D/2D heterojunction photocatalysts with excellent photocatalytic and photoelectrochemical activities. Journal of Alloys and Compounds, 2019. 775: p. 726-735.
    79. Asadabad, M.A. and M.J. Eskandari, Electron diffraction. Modern Electron Microscopy in Physical and Life Sciences, 2016: p. 3-24.
    80. Singh, V. and C. Rath, Passivation of native defects of ZnO by doping Mg detected through various spectroscopic techniques. RSC Advances, 2015. 5(55): p. 44390-44397.
    81. Li, H., et al., Heterostructured SnO2-SnS2@ C embedded in nitrogen-doped graphene as a robust anode material for lithium-ion batteries. Frontiers in chemistry, 2019. 7: p. 339.
    82. Wang, S., et al., Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Applied Catalysis B: Environmental, 2019. 243: p. 19-26.
    83. Yu, W., D. Xu, and T. Peng, Enhanced photocatalytic activity of gC 3 N 4 for selective CO 2 reduction to CH 3 OH via facile coupling of ZnO: a direct Z-scheme mechanism. Journal of Materials Chemistry A, 2015. 3(39): p. 19936-19947.
    84. Kim, K.M., et al., Synthesis of submicron hexagonal plate-type SnS2 and band gap-tuned Sn1− xTixS2 materials and their hydrogen production abilities on methanol/water photosplitting. International Journal of Photoenergy, 2014. 2014.
    85. Mahala, C., M.D. Sharma, and M. Basu, ZnO@ CdS heterostructures: an efficient photoanode for photoelectrochemical water splitting. New Journal of Chemistry, 2019. 43(18): p. 7001-7010.
    86. Wang, H., et al., Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn (OH) 6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis. Applied Catalysis B: Environmental, 2017. 209: p. 543-553.
    87. Jana, T., et al., Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. Journal of colloid and interface science, 2016. 480: p. 9-16.
    88. Jiang, M., et al., Co-doped SnS 2 nanosheet array for efficient oxygen evolution reaction electrocatalyst. Journal of Materials Science, 2019. 54(21): p. 13715-13723.
    89. Wang, J., et al., Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS applied materials & interfaces, 2012. 4(8): p. 4024-4030.
    90. Basu, M., N. Garg, and A.K. Ganguli, A type-II semiconductor (ZnO/CuS heterostructure) for visible light photocatalysis. Journal of Materials Chemistry A, 2014. 2(20): p. 7517-7525.
    91. Wang, L., et al., 3D porous ZnO–SnS p–n heterojunction for visible light driven photocatalysis. Physical Chemistry Chemical Physics, 2017. 19(25): p. 16576-16585.
    92. Pearson, R.G., Absolute electronegativity and hardness: application to inorganic chemistry. Inorganic chemistry, 1988. 27(4): p. 734-740.
    93. Li, J. and N. Wu, Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catalysis Science & Technology, 2015. 5(3): p. 1360-1384.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE