| 研究生: |
陳志軒 Chen, Chih-Hsuan |
|---|---|
| 論文名稱: |
煉鋼製程氣混燒之節能利用 Energy Saving on Burning Manufactured Gases of Steel-Making Processes |
| 指導教授: |
林大惠
Lin, Ta-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 煉焦爐氣 、高爐氣 、鍋爐 、噴流擴散火焰 |
| 外文關鍵詞: | Blast Furnace Gas, Coke Oven Gas, Inert Gas, Jet Diffusion Flames, Industrial Furnace, Boiler |
| 相關次數: | 點閱:161 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的為建立工業爐內單燒高爐氣(BFG)之燃燒技術,以降低穩焰所需的輔助燃料使用量,對於補充目前煉焦爐氣(COG)短缺,因而減少外購高價能源成本極有幫助。研究內容主要分為四部分: (1)理論分析單燒和混燒高爐氣的熱能轉換特性,(2)實驗分析鈍氣對噴流擴散火焰的影響, (3)理論分析鈍氣對噴流擴散火焰的影響,(4)現場鍋爐實驗。
第一部分為理論分析單燒和混燒高爐氣的熱能轉換特性,探討參數包含燃料使用量、化學計量空氣需求量、絕熱火焰溫度與煙道氣排放量。結果顯示:在化學計量比且無預熱條件下,單燒高爐氣需要大量燃氣才能達到預定產熱。以煉焦爐氣混燒高爐氣,燃氣量減少,但燃燒空氣量卻增加,而絕熱火焰溫度隨之上升。當單燒高爐氣時,煙道氣富含高爐氣本身的不可燃氣,故其體積流率高;若以煉焦爐氣混燒高爐氣,煙道氣體積流率隨高爐氣減少而降低。此外,並探討加入10%的過剩空氣與0.1MW的預熱條件下,製程氣燃燒特性的變化。
第二部分以實驗分析鈍氣對噴流擴散火焰的影響,在雙環同軸噴流燃燒器中,內環通入甲烷鈍氣混合氣,外環則通入空氣,所選用的鈍氣為氮氣或二氧化碳。甲烷噴流擴散火焰在流速低時為層流火焰,焰色為明亮的黃色,隨燃氣出口流速增加,火焰長度變長。甲烷噴流擴散火焰在內環流速較低時,加大外環空氣流速,火焰破孔後直接被吹熄,不會產生上飄。若增加鈍氣比例,火焰高度會降低,當氮氣比例超過70%或二氧化碳比例超過80%時,火焰無法點燃。隨著鈍氣比例增加,火焰破孔點及熄滅點所對應之外環空氣流速皆較低。在相同鈍氣比例下,內環噴流速度越大,火焰破孔點所對應之外環空氣流速會越低。
第三部分為理論分析鈍氣對噴流擴散火焰的影響,利用氣態燃燒理論方法,推導其理論。結果顯示:在甲烷噴流擴散火焰中,邊界層厚度隨軸向位置增加而增加,徑向速度與軸向速度則隨軸向位置增加而減低;氣體溫度、二氧化碳及水氣濃度皆在火焰面為最大值,並隨著徑向位置遠離火焰面而下降。隨著鈍氣比例增加,邊界層厚度、火焰長度與火焰半徑皆越小;在火焰面上的甲烷濃度、水氣濃度及氣體溫度皆較小。
第四部分為現場鍋爐實驗,主要利用鍋爐系統在正常運轉高負載(70%及60%)以及冷爐起爐低負載(50%及40%)情況之下,分析單燒和混燒高爐氣的熱能轉換特性,訂定高爐氣所需的最低輔助燃料使用量,評估單燒高爐氣之操作條件與時機。固定鍋爐負載即固定燃料之總產熱,隨著煉焦爐氣流率減少,高爐氣流率會增加。現場實驗中,排放的CO濃度相當低,而NOX隨煉焦爐氣流率減少而逐漸降低。由研究結果可知,無論高負載或低負載,調降煉焦爐氣流率,均無火焰不穩定(上飄或飄離)問題。此外,調降煉焦爐氣流率最低可至830 Nm3/hr,但基於安全因素,目前現場五部鍋爐只將煉焦爐氣輔助用量由原先3000 Nm3/hr降至2000 Nm3/hr,保守估計每年約可省下四千多萬元的能源成本效益。
Based on economical considerations, it is advantageous to develop the combustion technology of firing by-product gases without the support fuel for boilers in a steel mill plant. The research includes four parts: (1) theoretical analysis of individual firing and co-firing. (2) experimental study of the influence of inert gas on a jet diffusion flame. (3) theoretical analysis of the influence of inert gas on a jet diffusion flame. (4) test run in the boiler.
The first part is to analyze the combustion characteristics of individual firing and co-firing. The results show that the BFG gas volume flow rate is greater when firing individually than when firing BFG with a support fuel if a prescribed heat output is to be reached. A smaller air volume flow rate, a lower adiabatic flame temperature and a lower thermal efficiency are also found for the former case. The higher volume flow rate is necessary for the reason that BFG contains a large amount of inert gases. Additionally, the combustion characteristics of firing BFG individually or in combination with COG were discussed under the operating conditions of 10% excess air and/or 0.1MW preheat.
The second part is an experimental study of the influence of inert gas on a jet diffusion flame. The inert gas is carbon dioxide or nitrogen. The flame height is increased linearly with the jet velocity. Increasing the concentration of inert gas in the central jet decreases flame height and the flame color changes from yellow to blue. When the concentration of nitrogen in the central jet is more than 70% or when carbon dioxide is more than 80%, the flame can not be ignited. The critical outer airflow velocity at which broken flame or blow-out decreases with increasing concentration of inert gas in the central jet. At the same concentration of inert gas, the critical outer airflow velocity at which broken flame results is lower when the central jet has a greater exit velocity.
The third part is theoretical analysis of the influence of inert gas on a jet diffusion flame. The results show that in methane jet diffusion flame, the thickness of boundary layer increases with distance from the axis. Radial and axial velocity components decrease with distance from the axis. Besides, the gas temperature, CO2 concentration and steam concentration are maximal at the flame front. These quantities also decrease at a higher radial distance from the flame location. The thickness of boundary layer, flame height, and flame radius decrease when the inert gas concentration increases.
The fourth part is the test run of boiler. The experimental results obtained from an industrial boiler fired with BFG in combination with COG show that irrespective of a higher or lower boiler load, with gradually decreasing amount of COG, flame instability (lift-off and blow-out) did not occur and brought CO emission is low. In addition, a decrease in the amount of COG brought about a reduction in NOX emission. The minimal COG flow rate can be 830 Nm3/hr. However, based on safety consideration, the COG flow rate of five boilers was only decreased from 3000 to 2000 Nm3/hr. The cost was cut down about 40 million NTD per year.
1.“BP Statistical Review of World Energy 2004,” British Petroleum, 2004.
2.“International Energy Outlook 1997,” Energy Information Administration (EIA), Department of Energy (DOE), USA, 1997.
3.能源政策白皮書(民國87年版),經濟部能源委員會,1998。
4.「能源領域」,政府科技發展策略規劃報告(民國93年版),行政院國家科學委員會,2005。
5.Burke, S. P. and Schumann, T. E. W., “Diffusion Flames,” Industrial and Engineering Chemistry, Vol. 20, pp. 998-1004, 1928.
6.Lewis, B. and Elbe, G., Combustion, Flames, and Explosions of Gases, Academic Press, New York, 1961.
7.Hottel, H. C. and Hawthorne, W. R., “Diffusion in Laminar Flame Jets,” Symposium on Combustion and Flame, and Explosion Phenomena, Vol. 3, pp. 254-266, 1949.
8.Hawthorne, W. R., Weddell, D. S. and Hottel, H. C., “Mixing and Combustion in Turbulent Gas Jets,” Symposium on Combustion and Flame, and Explosion Phenomena, Vol. 3, pp. 266-288, 1949.
9.Becker, H. A. and Liang, D., “Visible Length of Vertical Free Turbulent Diffusion Flames,” Combustion and Flame, Vol. 32, pp. 115-137, 1978.
10.Kalghatgi, G. T., “Blow-Out Stability of Gaseous Jet Diffusion Flames. Part 1: In Still Air,” Combustion Science and Technology, Vol. 26, pp. 233-239, 1981.
11.Rokke, N. A., Hustad, J. E., Sonju, O. K. and Williams, F. A., “Scaling of Nitrogen Oxide Emissions from Buoyancy-Dominated Hydrocarbon Turbulent Jet Diffusion Flames,” Symposium (International) on Combustion, Vol. 24, pp. 385-393, 1992.
12.Cha, M. S. and Chung, S. H., “Characteristics of Lifted Flames in Nonpremixed Turbulent Confined Jets,” Symposium (International) on Combustion, Vol. 26, pp. 121-128, 1996.
13.Wohl, K., Kapp, N. M. and Gazley, C., “The Stability of Open Flames,” Symposium on Combustion and Flame, and Explosion Phenomena, Vol. 3, pp. 3-21, 1949.
14.Vanquickenborne, L. and Tiggelen, V., “The Stability Mechanism of Lifted Diffusion Flames,” Combustion and Flame, Vol. 10, pp. 59-69, 1966.
15.Chen, R. H., Kothawala, A., Chaos, M. and Chew, L. P., “Schmidt Number Effects on Laminar Jet Diffusion Flame Liftoff” Combustion and Flame, Vol. 141, pp. 469-472, 2005.
16.Torii, S., “Effect of Collar Length on Extension of Subsonic Hydrogen Jet Diffusion Flame Blowout Limits,” International Journal of Green Energy, Vol. 4, pp. 367-375, 2007.
17.Wu, Y., Al-Rahbi, I. S. and Kalghatgi, G. T., “The Stability of Turbulent Hydrogen Jet Flames with Carbon Dioxide and Propane Addition,” Fuel, Vol. 86, pp. 1840-1848, 2007.
18.Paubel, X., Cessou, A., Honore, D., Vervisch, L. and Tsiava, R., “A Flame Stability Diagram for Piloted Non-Premixed Oxycombustion of Low Calorific Residual Gases,” Proceedings of The Combustion Institute, Vol. 31, pp. 3385-3392, 2007.
19.Kiran, D. Y. and Mishra, D. P., “Experimental Studies of Flame Stability and Emission Characteristics of Simple LPG Jet Diffusion Flame ,” Fuel, Vol. 86, pp. 1545-1551, 2007.
20.Kumar, P. and Mishra, D. P., “Experimental Investigation of Laminar LPG-H2 Jet Diffusion Flame,” International Journal of Hydrogen Energy, Vol. 33, pp. 225-231, 2008.
21.Kumar, P. and Mishra, D. P., “Characterization of Bluff-body Stabilized LPG Jet Diffusion Flame with N2 Dilution,” Energy Conversion and Management, Vol. 49, pp. 2698-2703, 2008.
22.Hoppesteyn, P. and van den Bemt, J., “What Are The Fuel Properties of Coke Oven Gas?” No. 239, The IFRF Online Combustion Handbook, 2003.
23.Hoppesteyn, P. and van den Bemt, J., “What Are The Combustion and Flue Gas Properties of Coke Oven Gas?” No. 240, The IFRF Online Combustion Handbook, 2003.
24.Zabetakis, M.G., “Flammability Characteristics of Combustible Gases and Vapors (Bulletin 627),” Bureau of Mines, Washington, D. C., USA, 1965.
25.Hoppesteyn, P. and van den Bemt, J., “What Is The Composition of Blast Furnace Gas,” No. 242, The IFRF Online Combustion Handbook, 2003.
26.Hoppesteyn, P. and van den Bemt, J., “What Are The Combustion and Flue Properties of Blast Furnace Gas,” No. 243, The IFRF Online Combustion Handbook, 2003.
27.Fricker, N., “What Are The Options for The Beneficiation of Blast Furnace Gas,” No. 249, The IFRF Online Combustion Handbook, 2003.
28.馬曉茜,「燃氣互換性與火焰穩定性研究」,燃燒科學與技術,中國,第2卷,第1期,46-53頁,1996。
29.張興良,「寶鋼燃料系統優化初探」,冶金動力,中國,第3期,19-22頁,2001。
30.虞亞輝、于立軍、施伯紅,「多種燃料混燒及單燒鍋爐效率間的關係」,上海交通大學學報,中國,第35卷,第8期,1200-1202頁,2001。
31.張智剛、朱文蓓、曹子棟,「全燃和摻燃高爐煤氣爐的比較研究」,鍋爐技術,中國,第36卷,第1期,53-56頁,2005。
32.王鐵民,「全燃高爐煤氣鍋爐特性分析」,冶金動力,中國,第4期,55-56頁,2005。
33.張成群、梁占林,「燃氣鍋爐的技術改造實踐及淺析」,冶金動力,中國,第6期,9-13頁,2005。
34.孫穎軍、彭國勝、陳建磊,「雙燃料燃燒方式在蓄熱式加熱爐上的研究與應用」,工業爐,中國,第28卷,第2期,26-28頁,2006。
35.「京都議定書」,聯合國氣候變化綱要公約第三次締約國大會,日本京都,1997。
36.王運銘,「我國再生能源發展政策及推動現況」,工程,第78卷,第1期,48-61頁,2005。
37.能源科技研究發展白皮書(民國94年版),經濟部能源局,2005。
38.鄭淑珺,「製程氣混燒分析與對沖流擴散火焰合成奈米碳管研究」,國立成功大學機械工程學系碩士論文,2007。
39.「中鋼公司自產氣分析」,中鋼公司公用設施處,2006。
40.侯順雄,「燃燒科技與能源應用」,科學發展,第355期,12~17頁,2002。
41.Schlichting, H., Boundary Layer Theory, Seventh Edition, McGraw Hill, New York, USA, 1979.