簡易檢索 / 詳目顯示

研究生: 趙志銘
Chao, Chih-Ming
論文名稱: 生物軟組織的黏彈性模型分析
Viscoelastic modelling of biological soft tissues
指導教授: 劉立偉
Liu, Li-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 75
中文關鍵詞: 腱索黏彈性模型非線性廣義Kelvin模型潛變試驗單調拉伸試驗
外文關鍵詞: Chordae tendineae, viscoelastic model, the nonlinear generalized Kelvin model, creep response, uniaxial mechanical test
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們對三尖瓣腱索的力學行為進行了理論方面的研究,在經過一系列的三尖瓣腱索單調拉伸實驗後,實驗結果顯示腱索呈現典型的J 型力-位移曲線,因此我們使用非線性彈簧替換掉Generalized Kelvin 模型的線性彈簧,建立一個新的非線性黏彈性模型。此外,我們考慮模型的參數以及模型的初始條件,推導出模型在受到逐步的力/位移、固定變化率的力/位移以及循環加載的力/位移下的解析解,將所得到的模型與腱索組織的實驗結果進行比對後,發現此模型能很好的描述腱索在受到潛變試驗以及單調拉伸試驗時的結果,接著我們也對模型的初始條件以及其他內部參數的變量進行了研究,以檢驗各個參數對模型在受到逐步以及固定變量的力時位移響應的影響。除此之外,我們透過模型的解析解以及Prony's method 設計出了一種參數識別的方法,並且成功的識別出模型的參數值。另外,我們也考慮了腱索在真實生理上的行為,透過動態力學分析以及體外試驗的結果,對模型實施長時間的模擬,在研究過程中,我們察覺到了模型在長時間模擬下的限制,並提出了解決辦法,包含(1)增加的參數與(2)使用帶有分數微分的黏彈性模型以進行長時間的模擬。

    In the present study, the mechanical behavior of tricuspid valve (TV) chordae tendineae tissue is theoretically investigated. A series of uniaxial mechanical testing experiments of the TV chordae tendineae was conducted in Biomechanics and Biomaterials Design Laboratory hosted by Prof. Chung-Hao Lee and a viscoelastic model of chordae tendineae is developed by taking into account the initial condition of displacement of the tissue. This experimental result shows the typical J-shaped force-displacement curve of the TV chordae tendineae and the corresponding viscoelastic model is established via a nonlinear spring installed to replace the linear spring of the generalized Kelvin model. In addition, specified arrangements of the model parameters and the initial condition of the individual Kelvin element are proposed. The exact solutions of the model under step-wise, constant-rate, and cyclic loading forces/displacements are analytically derived. The resulted simulation is compared with the uniaxial mechanical testing of the TV chordae tendineae tissue and shows superior performance of the proposed model under creep and monotonic loading experiments. Furthermore, the parametric study of the model parameters are performed to examine the influence of initial conditions of displacement, as well as other internal variables, on the model response under step-wise and constant-rate forces. Also, we design a parameter identification method with the exact solution by Prony's method and successfully identify the parameters. Finally, we considered the operation in physiological heartbeat and conduct a long-term simulation by dynamic mechanical analysis (DMA) and in vitro experiment. In this research, we also realize the limitation of our model about yearlong simulation and come up with two solutions including (1) increasing the number of the Kelvin element or (2) establishing a new fractional viscoelastic model to tackle the long-term simulation.

    摘要 I Abstract II 致謝 IV List of figures VIII List of tables XIII Nomenclature XIV 1 Introduction 1 1.1 The chordae tendineae 1 1.2 Experimental evidence 4 1.2.1 Chordae tendineae tissue preparation and testing 4 1.3 Outlines 6 2 Viscoelastic Modelling 8 2.1 Viscoelastic formulation 8 2.1.1 The nonlinear generalized Kelvin (NGK) model 8 2.1.2 Geometric series to relate model parameters and initial conditions in the NKG model – Reduction in the number of model parameters 10 2.1.3 Complex modulus and loss tangent 12 2.1.4 Instantaneous/asymptotic model constants 12 2.2 NGK model under force control 13 2.2.1 Response of the NGK model to arbitrary forces 13 2.2.2 Response of the NGK model to a stepped force 14 2.2.3 Response of the NGK model to forces at a constant rate 16 2.2.4 Response of the NGK model to cyclic loading force 17 2.2.5 Fitting to both creep and monotonic loading data 18 2.3 State space representation 18 2.4 NGK model under displacement control 21 2.4.1 Response of relaxation tests 22 2.4.2 Responses of uniaxial tests 22 2.4.3 Response of dynamic mechanical analysis tests 23 3 Parametric Studies 29 3.1 Influence of initial conditions 29 3.2 Model response with non-zero-valued initial internal variables 30 3.3 Influence of material constants 31 3.4 Parameters identification based on exact solutions 32 3.4.1 Experiment design from exact solutions 32 4 Applications of the NGK model and fractional viscoelastic model 48 4.1 Operation in physiological heartbeat 48 4.1.1 Dynamic mechanical analysis 48 4.1.2 In vitro test with physiologic flow and pressure condition 49 4.2 Fractional viscoelastic model 50 4.2.1 Fractional derivatives 50 4.2.2 Fractional Maxwell model 51 5 Conclusions and Future work 60 5.1 Conclusions 60 5.2 Future work 61 Reference 62 Appendix 69 A The generalized Kelvin model 70 B Prony's method 72

    [1] S. Akhtar, K. M. Meek, and V. James. Ultrastructure abnormalities in proteoglycans,collagen fibrils, and elastic fibers in normal and myxomatous mitral valve chordae tendineae. Cardiovascular Pathology, 8(4):191–201, 1999.
    [2] H. G. Bahraseman, K. Hassani, M. Navidbakhsh, D. M. Espino, Z. A. Sani, and N. Fatouraee. Effect of exercise on blood flow through the aortic valve: a combined clinical and numerical study. Computer Methods in Biomechanics and Biomedical Engineering, 17(16):1821–1834, 2014.
    [3] J. E. Barber, F. K. Kasper, N. B. Ratliff, D. M. Cosgrove, B. P. Griffin, and I. Vesely. Mechanical properties of myxomatous mitral valves. Journal of Thoracic and Cardiovascular Surgery, 122(5):955–962, 2001.
    [4] G. Beylkin and L. Monzón. On approximation of functions by exponential sums. Applied and Computational Harmonic Analysis, 19(1):17–48, 2005.
    [5] A. Bonfanti, J. L. Kaplan, G. Charras, and A. Kabla. Fractional viscoelastic models for power-law materials. Soft Matter, 16:6002–6020, 2020.
    [6] A. H. Borghi, S. E. New, A. H. Chester, P. M. Taylor, and M. H. Yacoub. Timedependent mechanical properties of aortic valve cusps: Effect of glycosaminoglycan depletion. Acta Biomaterialia, 9(1):4645–4652, 2012.
    [7] J. A. Casado, S. Diego, D. Ferreño, E. Ruiz, I. Carrascal, D. Méndez, J. M. Revuelta, A. Pontón, J. M. Icardo, and F. Gutiérrez-Solana. Determination of the mechanical properties of normal and calcified human mitral chordae tendineae. Journal of the Mechanical Behavior of Biomedical Materials, 13:1–13, 2012.
    [8] C.-J. Chuong and Y.-C. Fung. Residual stress in arteries. In Frontiers in biomechanics, pages 117–129. Springer, 1986.
    [9] R. E. Clark. Stress-strain characteristics of fresh and frozen human aortic and mitral leaflets and chordae tendineae: Implications for clinical use. The Journal of Thoracic and Cardiovascular Surgery, 66(2):202–208, 1973.
    [10] M. Constable, H. E. Burton, B. M. Lawless, V. Gramigna, K. G. Buchan, and D. M. Espino. Effect of glutaraldehyde based cross-linking on the viscoelasticity of mitral valve basal chordae tendineae. Biomedical Engineering, 17(1):93, 2018.
    [11] G. R. de Prony. Essai experimental et analytique: sur les lois de la dilatabilite des fluides elastique et sur celles de la force expansive de la vapeur de l’eau et de la vapeur de l’alkool, a differentes temperatures. Journal Polytechnique ou Bulletin du Travail fait a l’Ecole Centrale des Travaux Publics, 1795.
    [12] C. E. Eckert, R. Fan, B. Mikulis, M. Barron, C. A. Carruthers, V. M. Friebe, N. R. Vyavahare, and M. S. Sacks. On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomaterialia, 9(1):4653–4660, 2013.
    [13] A. Fernández Rodríguez, L. de Santiago Rodrigo, E. López Guillén, J. M. Rodríguez Ascariz, J. M. Miguel Jiménez, and L. Boquete. Coding prony’s method in matlab and applying it to biomedical signal filtering. BMC Bioinformatics, 19(1):451, Nov 2018.
    [14] S. V. Jett, D. W. Laurence, R. P. Kunkel, A. R. Babu, K. E. Kramer, R. Baumwart, R. A. Towner, Y. Wu, and C.-H. Lee. An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves. Journal of the Mechanical Behavior of Biomedical Materials, 87:155–171, 2018.
    [15] J. H. Jimenez, D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: An in vitro study. Annals of Biomedical Engineering, 31(10):1171–1181, 2003.
    [16] K. A. Khoiy and R. Amini. On the biaxial mechanical response of porcine tricuspid valve leaflets. Journal of Biomechical Engineering, 138(10):104504, 2016.
    [17] K. S. Kunzelman and K. P. Cochran. Mechanical properties of basal and marginal mitral valve chordae tendineae. ASAIO Journal, 36(3):M405–408, 1990.
    [18] R. S. Lakes. Viscoelastic Solid. CRC Press, Boca Raton , Florida, USA, 1999.
    [19] D. W. Laurence, E. L. Johnson, M.-C. Hsu, R. Baumwart, A. Mir, H. M. Burkhart, G. A. Holzapfel, Y. Wu, and C.-H. Lee. A pilot in silico modeling-based study of the pathological effects on the biomechanical function of tricuspid valves. International Journal for Numerical Methods in Biomedical Engineering, 36(7):e3346, 2020.
    [20] C.-H. Lee, J.-P. Rabbah, A. P. Yoganathan, R. C. Gorman, J. H. Gorman, and M. S. Sacks. On the effects of leaflet microstructure and constitutive model on the closing behavior of the mitral valve. Biomechanics and Modeling in Mechanobiology, 14(6):1281–1302, 2015.
    [21] J. M. Lee, D. W. Courtman, and D. R. Boughner. The glutaraldehyde‐stabilized porcine aortic valve xenograft. i. tensile viscoelastic properties of the fresh leaflet material. Journal of Biomedical Materials Research, 18(1):61–77, 1984.
    [22] K. H. Lim, J. H. Yeo, and C. M. G. Duran. Three-dimensional asymmetrical modeling of the mitral valve: A finite element study with dynamic boundaries. Journal of Heart Valve Disease, 14(3):386–392, 2005.
    [23] K. O. Lim and D. R. Boughner. Mechanical properties of human mitral valve chordae tendineae: Variation with size and strain rate. Canadian Journal of Physiology and Pharmacology, 53(3):330–339, 1975.
    [24] K. O. Lim and D. R. Boughner. Low frequency dynamic viscoelastic properties of human mitral valve tissue. Cardiovascular Research, 10(4):459–465, 1976.
    [25] K. O. Lim and D. R. Boughner. Morphology and relationship to extensibility curves of human mitral valve chordae tendineae. Circulation Research, 39(4):580– 585, 1976.
    [26] K. O. Lim, D. R. Boughner, and D. G. Perkins. Ultrastructure and mechanical properties of chordae tendineae from a myxomatous tricuspid valve. Japanese Heart Journal, 24(4):539–548, 1983.
    [27] K. O. Lim, D. R. Boughner, and C. A. Smith. Dynamic elasticity of human mitral valve chordae tendineae. Canadian Journal of Physiology and Pharmacology, 55(3):413–418, 1977.
    [28] L.-W. Liu, C.-H. Lee, A. Aggarwal, C.-M. Chao, C. J. Ross, and Y.-K. Liao. Viscoelastic modelling of the tricuspid valve chordae tendineae tissue. Applied Mathematical Modelling, 105:648–669, 2022.
    [29] M. Lomholt, S. L. Nielsen, S. B. Hansen, N. T. Andersen, and J. M. Hasenkam. Differential tension between secondary and primary mitral chordae in an acute in-vivo porcine model. The Journal of Heart Valve Disease, 11(3):337—345, May 2002.
    [30] I. Markovsky and S. Van Huffel. Overview of total least-squares methods. Signal Processing, 87(10):2283–2302, 2007.
    [31] S. L. Marple and W. M. Carey. Digital spectral analysis with applications. The Journal of the Acoustical Society of America, 86(5):2043–2043, 1989.
    [32] W. H. McCullagh, J. W. Covell, and J. Ross Jr. Left ventricular dilatation and diastolic compliance changes during chronic volume overloading. Circulation, 45(5):943–951, 1972.
    [33] X. Ning, Q. Zhu, Y. Lanir, and S. S. Margulies. A transversely isotropic viscoelastic constitutive equation for brainstem undergoing finite deformation. Journal of Biomechanical Engineering, 128(6):925–933, 2006.
    [34] C. M. Otto, A. S. Pearlman, C. D. Kraft, C. Y. Miyake-Hull, I. G. Burwash, and C. J. Gardner. Physiologic changes with maximal exercise in asymptomatic valvular aortic stenosis assessed by doppler echocardiography. Journal of the American College of Cardiology, 20(5):1160–1167, 1992.
    [35] S. K. Panda and M. L. Buist. A finite nonlinear hyper-viscoelastic model for soft biological tissues. Journal of Biomechanics, 69:121–128, 2018.
    [36] A. Pokutta-Paskaleva, F. Sulejmani, M. DelRocini, and W. Sun. Comparative mechanical, morphological, and microstructural characterization of porcine mitral and tricuspid leaflets and chordae tendineae. Acta Biomaterialia, 85:241–252, 2019.
    [37] J. W. Polderman and J. C. Willems. Introduction to Mathematical Systems Theory. Springer, New York, 1998.
    [38] J. Ritchie, J. Jimenez, Z. He, M. S. Sacks, and A. P. Yoganathan. The material properties of the native porcine mitral valve chordae tendineae: An in vitro investigation. Journal of Biomechanics, 39(6):1129–1135, 2006.
    [39] B. Ross. Fractional calculus and its applications. 1975.
    [40] C. J. Ross, M.-C. Hsu, R. Baumwart, A. Mir, H. M. Burkhart, G. A. Holzapfel, Y. Wu, and C.-H. Lee. Quantification of load-dependent changes in the collagen fiber architecture for the strut chordae tendineae-leaflet insertion of porcine atrioventricular heart valves. Biomechanics and Modeling in Mechanobiology, 20:223–241, 2020.
    [41] C. J. Ross, Z. Junnan, M. Liang, W. Yi, and C. H. Lee. Mechanics and microstructure of the atrioventricular heart valve chordae tendineae: A review. Bioengineering (Basel), 7(1):25, 2020.
    [42] C. J. Ross, D. W. Laurence, M.-C. Hsu, R. Baumwart, Y. D. Zhao, A. Mir, H. M. Burkhart, G. A. Holzapfel, Y. Wu, and C.-H. Lee. Mechanics of porcine heart valves’strut chordae tendineae investigated as a leaflet–chordae–papillary muscle entity. Annals of Biomedical Engineering, 48(5):1463–1474, 2020.
    [43] M. D. Silver, J. H. C. Lam, N. Ranganathan, and E. D. Wigle. Morphology of the human tricuspid valve. Circulation, 43(3):333–348, 1971.
    [44] R. Sopakayang and R. De Vita. A mathematical model for creep, relaxation and strain stiffening in parallel-fibered collagenous tissues. Medical Engineering & Physics, 33(9):1056–1063, 2011.
    [45] Stankiewicz, Anna. Fractional maxwell model of viscoelastic biological materials. BIO Web Conf., 10:02032, 2018.
    [46] J. A. Stella, J. Liao, and M. S. Sacks. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. Journal of Biomechanics, 40(14):3169 3177, 2007.
    [47] M. J. Thubrikar, J. L. Heckman, and S. P. Nolan. High speed cine-radiographic study of aortic valve leaflet motion. J Heart Valve Dis, 2(6):653–61, 1993.
    [48] B. F. Waller, J. Howard, and S. Fess. Pathology of mitral valve stenosis and pure mitral regurgitation-part II. Clinical cardiology, 17(7):395–402, 1994.
    [49] Q. Wang and W. Sun. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Annals of Biomedical Engineering, 41(1):142–153, 2013.
    [50] A. G. Wilcox, K. G. Buchan, and D. M. Espino. Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae. Journal of the Mechanical Behavior of Biomedical Materials, 30:186–195, 2014.
    [51] A. S. Wineman and K. R. Rajagopal. Mechanical Response of Polymers: An introduction. Cambridge University Press, New York, 2000.
    [52] W. Zhang, A. Capilnasiu, and D. Nordsletten. Comparative analysis of nonlinear viscoelastic models across common biomechanical experiments. Journal of Elasticity, 145(1):117–152, 2021.
    [53] W. Zhang, H. Y. Chen, and G. S. Kassab. A rate-insensitive linear viscoelastic model for soft tissues. Biomaterials, 28(24):3579 – 3586, 2007.
    [54] W. Zhang, X. Guo, and G. S. Kassab. A generalized Maxwell model for creep behavior of artery opening angle. Journal of Biomechanical Engineering, 130(5):054502, 2008.
    [55] K. Zuo, T. Pham, K. Li, C. Martin, Z. He, and W. Sun. Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae. Journal of the Mechanical Behavior of Biomedical Materials, 62:607–618, 2016.

    無法下載圖示 校內:2027-07-19公開
    校外:2027-07-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE