| 研究生: |
陳學信 Chen, Shieh-Xin |
|---|---|
| 論文名稱: |
2kW獨立式太陽能動力船之開發研究 Research and Development of a 2kW Solar Powered Boat |
| 指導教授: |
趙儒民
Chao, Ru-Min |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 太陽能動力船 、獨立式太陽能系統 、二次式極值法 、電池管理系統 、監控系統 |
| 外文關鍵詞: | Solar Powered Boat, stand-alone photovoltaic (PV) system, quadratic maximization, battery management system, monitoring system |
| 相關次數: | 點閱:134 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在21世紀,太陽能是最受歡迎的再生能源。太陽能相關開發在實驗室已有多年。本文嘗試將太陽能系統運用在2kW太陽能動力船上。
本文設計了一個完整的太陽能動力船系統。此系統主要有太陽能系統、電池管理系統及監控系統。太陽能系統最大功率追縱(MPPT)技術是運用實驗室開發的二次式極值法(QM method)。因船在水上會有搖擺的現象,因此會影響到最大功率追縱結果。為了能更快速的進行MPPT演算所以選用了二次式極值法。所有的太陽能板都會銜接到一片DC/DC 轉換器,以將太陽能電力轉換到電池組中。因船型的關係吾人選用了不一樣型號的多晶矽太陽能板。為此吾人可測試DC/DC轉換器的穩定性。電池管理系統(BMS)用於管理電池組的電量。其最主要功能為切換電池組的充/放電。在此系統中擁有三個模式,分別為手動模式、定時模式及電池組電壓比較模式。監控系統是用以監控全船資訊並且控制其他系統的操作。吾人將所有系統安裝到一艘八米木船上,並且完成實測與評估。
In 21st century, the solar energy is the favorite renewable energy. The photovoltaic of our laboratory already research for few years. Now we try to apply our photovoltaic system in a 2kW solar powered boat.
In this thesis, we design a fully complete solar powered boat monitoring system. The main system in solar powered boat is photovoltaic (PV) system and battery management system (BMS). In the photovoltaic system we use the quadratic maximization (QM) method to do the maximum power point tracking (MPPT). The ship on the water always swing, it will affect the MPPT tracking. So a faster MPPT method is necessary so we choosing the QM method. Every PV panel will connect to a DC/DC converter which can convert the solar power to the battery bank. Depends on the ship shape we use different model polysilicon PV panels. We also test the stability of the DC/DC converter. The battery management system (BMS) is use for manage the battery bank capacity. The main feature of BMS system is switching the battery bank to charge /discharge. In the BMS system has three different switching modes which is manual mode, time setting mode and battery bank voltage compare mode. We install our system to an 8 meter wooden ship and evaluation the system.
[1] Th. Schmidt, "Solarboote für Champ-Pittet", Sonnenenergiesolaire 4/95
[2] S. Jocobs, Heimann,“Ein Schiff fur heitere Tage”, 2009.
[3] A. Harris, “Will solar float your boat?”, Energy & Technology, pp.60-61, July 2009
[4] P.J. Tang, “Taiwan yacht orders target on world’s top four in 2015”, Central News Agency, October 2007.
[5] C. Schaffrin, “The solar boat “KORONA”: two years of experience”, 10th European Photovoltaic Solar Energy Conference, pp. 813-814,1991
[6] G. S. Spagnolo, D. Papalillo, A. Martocchia, G. Makary, “Solar-Electric Boat”, Jour-nal of Transportation Technologies, pp. 144-149, 2012.
[7] T. S. Li,“Application of maximum power point tracking technique to the development of solar-energy-auxiliary-power ship”, 2009
[8] G. M. Lin, “Study on the system integration of an auxiliary solar-power vessel for underwater geological survey”, 2010
[9] J. H. Ye, “Development of autonomous solar using fuzzy theory”, 2011
[10] M. T. Lin, “Solar Powered Ship”, The Liberty Times, Sep 12th, 2008
[11] Y.T. Zheng,“Study on the stand-alone Photovoltaic Harvesting System and its ap-plication”, 2011
[12] M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, "Solar cell efficiency tables (version 36)," Progress in Photovoltaics: Research and Applications, vol. 18, pp. 346-352, 2010.
[13] K. L. Kennerud, “Analysis of performance degradation in CdS solar cells, ibid., AES-5, pp.912-917, 1969.
[14] R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics," Kluwer Academic Publishers, 2nd edition, 2001.
[15] S.-H. Ko and R.-M. Chao, "Photovoltaic dynamic MPPT on a moving vehicle," Solar Energy, vol. 86, pp. 1750-1760, 2012.
[16] R. M. Chao, S. H. Ko, F. S. Pai, I. H. Lin, and C. C. Chang, "Evaluation of a photo-voltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm," Solar Energy, vol. 83, pp. 2177-2185, 2009.
[17] P.L. Chen, “Study on the Distributed Photovoltaic System Design and Performance Test”, 2012.
[18] C.F. Lo, “Study on the Power Optimizer Design and Implementation on a Distributed Photovoltaic System” , 2013.
[19] K.Y. Liu,“Charge Equalizer Design and Implementation on a Stand-alone type Dis-tributed Photovoltaic Harvesting System”, 2013.
[20] J.W. Stevens, G.P. Corey, “A study of Lead-Acid Battery Efficiency Near top of Charge and the impact on PV system Design”, Photovoltaic Specialists Conference., pp. 1485-1488, May 1996.
[21] P. Arun, R. Banerjee, S. Bandyopadhyay, “Optimum Sizing of photovoltaic battery system incorporating uncertainty through design space approach”, Solar Energy., vol. 83, no. 7, pp.1013-1025, July 2009.
[22] N. Achaibou, M. Haddadi, A. Malek, “Modeling of lead acid batteries in PV systems”, Energy Procedia., vol. 18, no. 7, pp.538-544, 2012.
[23] N. Vela, J. Aguilera, “Characteristic of Charge Voltage of Lead-acid Batteries: Ap-plication to the Charge Control Strategy in Photo voltaic Systems”, Prog. Photovolt: Res. Appl., vol. 14, pp.721-732, May 2006.
[24] H.L. Tsai, C.S. Tu, Y.J. Su, “Development of Generalized Photovoltaic Model Using MATLAB/SIMULINK”, Proceedings of WCECS, 2008.
[25] S. Semaoui, A.H. Arad, S. Bacha, B. Azoui, “Optimal sizing of a stand-alone photo-voltaic system with energy management in isolated areas”, Energy Procedia., vol. 36, pp.358-368, 2013.
[26] N. Achaibou, M. Haddadi, A. Malek, “Lead acid batteries simulation including ex-perimental validation”, Journal of Power Source., vol. 185, no. 2, pp.1484-1491, Dec 2008.