| 研究生: |
李晉德 Li, Jin-De |
|---|---|
| 論文名稱: |
以流體化床反應器探討H2S對鐵系載氧體於化學環路燃燒合成氣之影響 Effect of Hydrogen Sulfide on Chemical Looping Combustion of Syngas Using Fe-based Oxygen Carrier in a Fluidized Bed Reactor |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 200 |
| 中文關鍵詞: | 化學環路燃燒 、載氧體 、流體化床 、合成氣 |
| 外文關鍵詞: | Chemical looping combustion, Oxygen carrier, Fluidized bed reactor, Syngas |
| 相關次數: | 點閱:61 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來人類大量使用化石燃料,使大氣中二氧化碳濃度不斷上升,造成嚴重的全球暖化以及全球氣候變遷等問題。因此,為了有效解決此問題,二氧化碳捕獲與封存技術是近年來非常受關注的議題。在這些技術中,化學環路燃燒 (Chemical looping combustion, CLC)被視為最有潛力且最具經濟效益之技術,可有效減少二氧化碳捕獲的成本,避免NOx生成,且增加燃燒效率。
本研究利用臨濕涵浸法自製Fe2O3/SiO2以及Fe2O3/Al2O3當成載氧體,於流體化床反應器與煤炭或生質體氣化合成氣 (H2, CO, CH4) 進行化學環路燃燒,探討不同操作條件 (氣體濃度、流體化速度、溫度)對載氧體利用率之影響。在TPR分析中,Fe2O3/SiO2和Fe2O3/Al2O3被氫氣還原使重量分別下降至原先的91.78 %以及90.59 %,根據其重量變化可知載氧體被還原至FeO與Fe之間。石英管實驗結果顯示濃度提高使擴散效果增加,能提升利用率,但CO和CH4濃度過高時會造成積碳現象;流速過高使停留時間太短,不利於反應。流速太低,載氧體無法流體化亦不利反應;溫度高達1,000℃時,燒結現象使利用率下降。當CH4 作為還原氣體與Fe2O3/Al2O3反應時,出現嚴重積碳現象。Fe2O3/SiO2經過10次循環反應及再生後,利用率下降至僅剩43%左右,可能是因為生成不可再生之Fe2SiO4尖晶石結構導致;Fe2O3/Al2O3則保持大約76% 的利用率。從XRD、XPS、FTIR、SEM的結果顯示,反應後之載氧體從Fe2O3晶像被還原至FeO與元素Fe之間,從XRD結果也確實發現Fe2O3/SiO2反應後會有Fe2SiO4晶像。當H2S加入系統後,由於其會與載氧體生成FeS結構,阻塞載氧體上之活性位置,導致載氧體與H2和CO反應的利用率下降。另外,從FTIR分析可知,H2S於系統中,與載氧體以及合成氣反應後最終將生成COS氣體。
In recent years, people have burned a great amount of fossil fuels, which dramatically increases the CO2 emission to the atmosphere. It causes some severe problems such as global warming and climate change. In order to solve the problems, carbon capture and storage (CCS) technologies become a great issue to reach the goals. Among these technologies, chemical looping combustion (CLC) has been considered as one of the most efficient and potential technologies which could effectively decrease the cost of CO2 capturing, avoid the formation of NOx and increase the combustion efficiency.
In this work, the incipient wetness impregnation method was used to prepare the Fe2O3/SiO2 and Fe2O3/Al2O3 oxygen carriers. The oxygen carriers were used to react with coal and biomass gasified syngas composed of H2, CO and CH4 under various operating parameters in order to investigate their influence to the utilization of oxygen carriers. In TPR analysis, the weight of Fe2O3/SiO2 and Fe2O3/Al2O3 are reduced to 91.78% and 90.59% by 10% H2, respectively. According to the weight loss, the oxygen carriers are reduced to the state between FeO and Fe. In tube test, results show that utilization of oxygen carriers would increase with concentration due to their higher diffusion capacity. However, there would be carbon deposition when CO and CH4 concentrations are too high. When the superficial velocity is too fast, the utilization would decrease due to short retention time. On the other hands, the utilization also decreases if the superficial velocity is too low which can’t generate a fluidized bed. As the temperature is up to 1,000℃, there would be agglomeration phenomena which cause a decrease of utilization. It is worth noting that there is a severe carbon masking problem for the CH4 test of Fe2O3/Al2O3. After 10 redox cycles, the utilization of Fe2O3/SiO2 dramatically decreases to about 43% due to the formation of Fe2SiO4 which can’t be fully reversible. However, Fe2O3/Al2O3 remains a good utilization at about 76% throughout the cycles. From the results of XRD, XPS, FTIR and SEM, Fe2O3 is indeed reduced to the state between FeO and Fe after combustion reaction. Besides, it is found that there is Fe2SiO4 structure after combustion reaction when SiO2 serves as the support. When H2S is added into the system, it would react with the oxygen carriers and form FeS structure which might block the active sites to cause a decrease of utilization. Furthermore, from the results of FTIR, H2S would react with the oxygen carriers and syngas, and ultimately transforms to COS.
Adánez, J., De Diego, L.F., García-Labiano, F., Gayán, P., Abad, A., and Palacios, J., 2004. Selection of oxygen carriers for chemical-looping combustion. Energy & Fuels 18(2):371-377.
Ali, S., Zabidi, N.A.M., and Subbarao, D., 2011. Correlation between Fischer-Tropsch catalytic activity and composition of catalysts. Chemistry Central Journal 5(1):68.
Antzara, A., Heracleous, E., Silvester, L., Bukur, D.B., and Lemonidou, A.A., 2016. Activity study of NiO-based oxygen carriers in chemical looping steam methane reforming. Catalysis Today 272:32-41.
Arrhenius, S., 1889. Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte. Zeitschrift für physikalische Chemie 4(1):96-116.
Association, W.C., 2012. Coal facts 2013. Available onlin e: https://web. archive. org/web/20160202160918/https://www. worldcoal. org/sites/default/files/coal_facts_2014% 2812_09_2014 29.
Banerjee, A.M., Shirole, A.R., Pai, M.R., Tripathi, A.K., Bharadwaj, S.R., Das, D., and Sinha, P.K., 2012. Catalytic activities of Fe2O3 and chromium doped Fe2O3 for sulfuric acid decomposition reaction in an integrated boiler, preheater, and catalytic decomposer. Applied Catalysis B: Environmental 127:36-46.
Bartholomew, C.H., and Farrauto, R.J., 2011. Fundamentals of industrial catalytic processes. John Wiley & Sons.
Baukal Jr, C.E., 2013. Oxygen-enhanced combustion. CRC press.
Bhavsar, S., and Veser, G., 2014. Chemical looping beyond combustion: production of synthesis gas via chemical looping partial oxidation of methane. RSC Adv. 4(88):47254-47267.
Bjorqivst, C., 2010. Low emission gas turbine technology for hydrogen-rich Syngas: EU Research Project on developing gas turbines to pave the way for commercial deployment of efficient, clean, flexible and reliable IGCC plants with CCS by 2020. Mechanical Engineering-CIME 132(12):56-57.
Blas, L., Dutournié, P., Dorge, S., Josien, L., Kehrli, D., and Lambert, A., 2016. Thermal stability study of NiAl2O4 binders for Chemical Looping Combustion application. Fuel 182(Supplement C):50-56.
Blesl, M., and Bruchof, D., 2010. Syngas Production from Coal. IEA ETSAP, Stuttgart.
Bousquet, P., Ciais, P., Miller, J., Dlugokencky, E., Hauglustaine, D., Prigent, C., Van Der Werf, G., Peylin, P., Brunke, E.-G., and Carouge, C., 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443(7110):439.
Bousquet, P., Ringeval, B., Pison, I., Dlugokencky, E., Brunke, E.-G., Carouge, C., Chevallier, F., Fortems-Cheiney, A., Frankenberg, C., and Hauglustaine, D., 2011. Source attribution of the changes in atmospheric methane for 2006–2008. Atmospheric Chemistry and Physics 11(8):3689-3700.
Brajpuriya, R., and Shripathi, T., 2009. Investigation of Fe/Al interface as a function of annealing temperature using XPS. Applied surface science 255(12):6149-6154.
Brinker, C.J., and Scherer, G.W., 2013. Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.
Buchan, B., and Cao, C., 2004. Coal-fired generation: proven and developing technologies. Office of Market Monitoring and Strategic Analysis, Florida Public Service Commission Reports and other Sources: Electric and Gas (6):1-25.
Cao, Y., and Pan, W.-P., 2006. Investigation of chemical looping combustion by solid fuels. 1. Process analysis. Energy & Fuels 20(5):1836-1844.
Casero, P., García-Peña, F., and Coca, P., 2013. Elcogas Pre-combustion Carbon Capture Pilot. Real Experience of Commercial Technology. Energy Procedia 37:6374-6382.
Chase, M., Jr., Ed, 1998. Tables, NIST-JANAF Thermochemical. J. Phys. Chem. Ref. Data:1952.
Chen, Q., Hu, S., Xiang, J., Su, S., Sun, L., Wang, Y., Zhang, L., and Chi, H., 2016. Isomorphous replacement in Fe2O3–NiO/Al2O3 particles and its effect on oxygen carrier performance. Fuel Processing Technology 146(Supplement C):56-61.
Chervona, Y., Arita, A., and Costa, M., 2012. Carcinogenic metals and the epigenome: understanding the effect of nickel, arsenic, and chromium. Metallomics 4(7):619-627.
Cho, P., Mattisson, T., and Lyngfelt, A., 2004. Comparison of iron-, nickel-, copper- and manganese-based oxygen carriers for chemical-looping combustion. Fuel 83(9):1215-1225.
Cho, P., Mattisson, T., and Lyngfelt, A., 2005. Carbon formation on nickel and iron oxide-containing oxygen carriers for chemical-looping combustion. Industrial & Engineering Chemistry Research 44(4):668-676.
Chuang, S.Y., Dennis, J.S., Hayhurst, A.N., and Scott, S.A., 2008. Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combustion and Flame 154(1):109-121.
Coccato, A., Jehlicka, J., Moens, L., and Vandenabeele, P., 2015. Raman spectroscopy for the investigation of carbon‐based black pigments. Journal of Raman Spectroscopy 46(10):1003-1015.
Consonni, S., Lozza, G., Pelliccia, G., Rossini, S., and Saviano, F., Year. of Conference of Conference. Chemical-looping combustion for combined cycles with CO2 capture. ASME Turbo Expo 2004: Power for Land, Sea, and Air, 2004, pp. 321-331. American Society of Mechanical Engineers.
Coppola, A., Solimene, R., Bareschino, P., and Salatino, P., 2015. Mathematical modeling of a two-stage fuel reactor for chemical looping combustion with oxygen uncoupling of solid fuels. Applied Energy 157:449-461.
Council, N.R., and Levels, C.o.A.E.G., 2009. Acute exposure guideline levels for selected airborne chemicals. Volume 9. National Academies Press.
Damen, K., Gnutek, R., Kaptein, J., Ryan Nannan, N., Oyarzun, B., Trapp, C., Colonna, P., Van Dijk, E., Gross, J., and Bardow, A., 2011. Developments in the pre-combustion CO2 capture pilot plant at the Buggenum IGCC. Energy Procedia 4:1214-1221.
Davydov, A., Chuang, K.T., and Sanger, A.R., 1998. Mechanism of H2S oxidation by ferric oxide and hydroxide surfaces. The Journal of Physical Chemistry B 102(24):4745-4752.
De Diego, L.F., Garcı́a-Labiano, F., Adánez, J., Gayán, P., Abad, A., Corbella, B.M., and Palacios, J.M.a., 2004. Development of Cu-based oxygen carriers for chemical-looping combustion. Fuel 83(13):1749-1757.
Djebaili, K., Mekhalif, Z., Boumaza, A., and Djelloul, A., 2015. XPS, FTIR, EDX, and XRD analysis of Al2O3 scales grown on PM2000 alloy. Journal of Spectroscopy 2015.
Du, G., Liu, Z., Xia, X., Chu, Q., and Zhang, S., 2006. Characterization and application of Fe3O4/SiO2 nanocomposites. Journal of sol-gel science and technology 39(3):285-291.
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J.C., Farahani, E., and Kadner, S., 2014. IPCC climate change 2014 mitigation of climate change.
Ekström, C., Schwendig, F., Biede, O., Franco, F., Haupt, G., De Koeijer, G., Papapavlou, C., and Røkke, P.E., 2009. Techno-economic evaluations and benchmarking of pre-combustion CO2 capture and oxy-fuel processes developed in the European ENCAP project. Energy Procedia 1(1):4233-4240.
Ergun, S., 1952. Fluid flow through packed columns. Chem. Eng. Prog. 48:89-94.
Figueroa, J.D., Fout, T., Plasynski, S., Mcilvried, H., and Srivastava, R.D., 2008. Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program. International Journal of Greenhouse Gas Control 2(1):9-20.
Forero, C., Gayán, P., De Diego, L., Abad, A., García-Labiano, F., and Adánez, J., 2009. Syngas combustion in a 500 W th chemical-looping combustion system using an impregnated Cu-based oxygen carrier. Fuel Processing Technology 90(12):1471-1479.
Forutan, H.R., Karimi, E., Hafizi, A., Rahimpour, M.R., and Keshavarz, P., 2015. Expert representation chemical looping reforming: A comparative study of Fe, Mn, Co and Cu as oxygen carriers supported on Al2O3. Journal of Industrial and Engineering Chemistry 21:900-911.
Fu, H., Ding, X., Ren, C., Li, W., Wu, H., and Yang, H., 2017. Preparation of magnetic porous NiFe2O4/SiO2 composite xerogels for potential application in adsorption of Ce(iv) ions from aqueous solution. RSC Advances 7(27):16513-16523.
Fujiki, J., Chowdhury, F.A., Yamada, H., and Yogo, K., 2017. Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent. Chemical Engineering Journal 307:273-282.
Geldart, D., 1973. Types of gas fluidization. Powder Technology 7(5):285-292.
Gervasini, A., Messi, C., Carniti, P., Ponti, A., Ravasio, N., and Zaccheria, F., 2009. Insight into the properties of Fe oxide present in high concentrations on mesoporous silica. Journal of Catalysis 262(2):224-234.
Gervasini, A., Messi, C., Ponti, A., Cenedese, S., and Ravasio, N., 2008. Nanodispersed Fe oxide supported catalysts with tuned properties. The Journal of Physical Chemistry C 112(12):4635-4642.
Gilliland, E.R., and Lewis, W.K., 1954. Production of pure carbon dioxide. Google Patents.
Goroshko, V., Rozenbaum, R., and Todes, O.M., 1958. Approximate laws of fluidized bed hydraulics and restrained fall. Izv. Vyssh. Uchebn. Zaved. Neft Gaz, No. i 125.
Gu, H., Shen, L., Xiao, J., Zhang, S., Song, T., and Chen, D., 2013. Evaluation of the effect of sulfur on iron-ore oxygen carrier in chemical-looping combustion. Industrial & Engineering Chemistry Research 52(5):1795-1805.
Guo, P., and Wang, C., 2017. Good lithium storage performance of Fe2SiO4 as an anode material for secondary lithium ion batteries. RSC Advances 7(8):4437-4443.
Haber, J., Block, J., and Delmon, B., 1995. Manual of methods and procedures for catalyst characterization (Technical report). Pure and applied Chemistry 67(8-9):1257-1306.
Hakonsem, S., Dahl, I., Stange, M., Spejelkavik, A., and Blom, R., Year. of Conference of Conference. On the development of novel reactor concepts for chemical looping combustion-part 2. Proc 1st Int Conf on Chemical Looping. Lyon, France, 2010.
Hampton, C., Demoin, D., and Glaser, R.E., 2010. Vibrational spectroscopy tutorial: sulfur and phosphorus. Organic Spectroscopy, ed by Glaser RE.
Hart, D., Lehner, F., Rose, R., and Lewis, J., 2015. The Fuel Cell Industry Review 2014. E4tech.
Hatanaka, T., Matsuda, S., and Hatano, H., Year. of Conference of Conference. A new-concept gas-solid combustion system" MERIT" for high combustion efficiency and low emissions. Energy Conversion Engineering Conference, 1997. IECEC-97., Proceedings of the 32nd Intersociety, 1997, pp. 944-948. IEEE.
Hayashi, H., Chen, L.Z., Tago, T., Kishida, M., and Wakabayashi, K., 2002. Catalytic properties of Fe/SiO2 catalysts prepared using microemulsion for CO hydrogenation. Applied Catalysis A: General 231(1):81-89.
Herranz, T., Rojas, S., Pérez-Alonso, F., Ojeda, M., Terreros, P., and Fierro, J., 2006. Carbon oxide hydrogenation over silica-supported iron-based catalysts: Influence of the preparation route. Applied Catalysis A: General 308:19-30.
Hindryawati, N., Maniam, G.P., Karim, M.R., and Chong, K.F., 2014. Transesterification of used cooking oil over alkali metal (Li, Na, K) supported rice husk silica as potential solid base catalyst. Engineering Science and Technology, an International Journal 17(2):95-103.
Holladay, J.D., Hu, J., King, D.L., and Wang, Y., 2009. An overview of hydrogen production technologies. Catalysis Today 139(4):244-260.
Hossain, M.M., and De Lasa, H.I., 2008. Chemical-looping combustion (CLC) for inherent CO2 separations—a review. Chemical Engineering Science 63(18):4433-4451.
Hossein Sahraei, M., Mccalden, D., Hughes, R., and Ricardez-Sandoval, L.A., 2014. A survey on current advanced IGCC power plant technologies, sensors and control systems. Fuel 137:245-259.
Huang, W.-C., Kuo, Y.-L., Su, Y.-M., Tseng, Y.-H., Lee, H.-Y., and Ku, Y., 2017. A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process. Chemical Engineering Journal 316:15-23.
Huang, Z., He, F., Zhu, H., Chen, D., Zhao, K., Wei, G., Feng, Y., Zheng, A., Zhao, Z., and Li, H., 2015. Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier. Applied Energy 157:546-553.
Hubbard, C.R., and Snyder, R.L., 1988. RIR-measurement and use in quantitative XRD. Powder Diffraction 3(2):74-77.
Ilavsky, J., and Bena, J., 1967. Determination of minimum fluidization velocity of polydispersed materials (2). Chemické Zvesti 21(12):877-&.
Ishida, M., and Jin, H., 1994. A new advanced power-generation system using chemical-looping combustion. Energy 19(4):415-422.
Ishida, M., and Jin, H., 1996. A novel chemical-looping combustor without NOx formation. Industrial & Engineering Chemistry Research 35(7):2469-2472.
Ishida, M., Jin, H., and Okamoto, T., 1996. A fundamental study of a new kind of medium material for chemical-looping combustion. Energy & Fuels 10(4):958-963.
Ishida, M., Jin, H., and Okamoto, T., 1998. Kinetic behavior of solid particle in chemical-looping combustion: suppressing carbon deposition in reduction. Energy & Fuels 12(2):223-229.
Kavouridis, K., and Koukouzas, N., 2008. Coal and sustainable energy supply challenges and barriers. Energy Policy 36(2):693-703.
Kerr, H.R., 2005. Capture and Separation Technology Gaps and Priority Research Needs-Chapter 38.
Khan, M.N., and Shamim, T., 2017. Thermodynamic screening of suitable oxygen carriers for a three reactor chemical looping reforming system. International Journal of Hydrogen Energy.
Ko, T.-H., 2005. 以紅壤在高溫下去除煤炭氣化氣中 硫化氫之研究. 成功大學環境工程學系學位論文:1-174.
Kock, A., Fortuin, H., and Geus, J., 1985. The reduction behavior of supported iron catalysts in hydrogen or carbon monoxide atmospheres. Journal of Catalysis 96(1):261-275.
Koichumanova, K., Gupta, K.S.S., Lefferts, L., Mojet, B., and Seshan, K., 2015. An in situ ATR-IR spectroscopy study of aluminas under aqueous phase reforming conditions. Physical Chemistry Chemical Physics 17(37):23795-23804.
Kothari, R., Buddhi, D., and Sawhney, R.L., 2008. Comparison of environmental and economic aspects of various hydrogen production methods. Renewable and Sustainable Energy Reviews 12(2):553-563.
Kotowicz, J., and Iluk, T., 2008. Układy gazowo-parowe zintegrowane ze zgazowaniem. Rynek Energii (3):34-40.
Kunii, D., and Levenspiel, O., 2013. Fluidization engineering. Elsevier.
Kunze, C., and Spliethoff, H., 2010. Modelling of an IGCC plant with carbon capture for 2020. Fuel Processing Technology 91(8):934-941.
Kuo, Y.-L., Huang, W.-C., Tseng, Y.-H., Chang, S.-H., Ku, Y., and Lee, H.-Y., 2018. Electric arc furnace dust as an alternative low-cost oxygen carrier for chemical looping combustion. Journal of Hazardous Materials 342:297-305.
Leidos, 2016. Comparison of Fuels Used for Electric Generation in the U.S. Leidos, INC.
Leion, H., Mattisson, T., and Lyngfelt, A., 2009. Using chemical-looping with oxygen uncoupling (CLOU) for combustion of six different solid fuels. Energy Procedia 1(1):447-453.
Levenspiel, O., 1999. Chemical reaction engineering. Industrial & Engineering Chemistry Research 38(11):4140-4143.
Levina, E., Bennett, S., and Mccoy, S., 2013. Technology roadmap: carbon capture and storage. OECD/IEA.
Li, F., Kim, H.R., Sridhar, D., Wang, F., Zeng, L., Chen, J., and Fan, L.-S., 2009. Syngas chemical looping gasification process: oxygen carrier particle selection and performance. Energy & Fuels 23(8):4182-4189.
Linderholm, C., Lyngfelt, A., Cuadrat, A., and Jerndal, E., 2012. Chemical-looping combustion of solid fuels–Operation in a 10kW unit with two fuels, above-bed and in-bed fuel feed and two oxygen carriers, manganese ore and ilmenite. Fuel 102:808-822.
Linstrom, P.J., and Mallard, W., 2001. NIST Chemistry webbook; NIST standard reference database No. 69.
Liu, Y., Cheng, B., Wang, K.-K., Ling, G.-P., Cai, J., Song, C.-L., and Han, G.-R., 2014. Study of Raman spectra for γ-Al2O3 models by using first-principles method. Solid State Communications 178:16-22.
Ma, J., Zhao, H., Tian, X., Wei, Y., Rajendran, S., Zhang, Y., Bhattacharya, S., and Zheng, C., 2015. Chemical looping combustion of coal in a 5 kWth interconnected fluidized bed reactor using hematite as oxygen carrier. Applied Energy 157:304-313.
Ma, Z., Xiao, R., and Chen, L., 2017. Kinetics of sintering induced surface area decay of iron oxide in the reduction process of chemical looping combustion. Fuel Processing Technology 168(Supplement C):20-26.
Majumder, S., Dey, S., Bagani, K., Dey, S., Banerjee, S., and Kumar, S., 2015. A comparative study on the structural, optical and magnetic properties of Fe3O4 and Fe3O4@SiO2 core–shell microspheres along with an assessment of their potentiality as electrochemical double layer capacitors. Dalton Transactions 44(16):7190-7202.
Mansouri Majoumerd, M., Raas, H., De, S., and Assadi, M., 2014. Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project. Applied Energy 113:452-462.
Matsumoto, S.i., Ikeda, Y., Suzuki, H., Ogai, M., and Miyoshi, N., 2000. NOx storage-reduction catalyst for automotive exhaust with improved tolerance against sulfur poisoning. Applied Catalysis B: Environmental 25(2):115-124.
Mattisson, T., Johansson, M., and Lyngfelt, A., 2006. The use of NiO as an oxygen carrier in chemical-looping combustion. Fuel 85(5-6):736-747.
Mattisson, T., and Lyngfelt, A., 2001. Capture of CO2 using chemical-looping combustion. Scandinavian-Nordic Section of Combustion Institute:163-168.
Mattisson, T., Lyngfelt, A., and Leion, H., 2009. Chemical-looping with oxygen uncoupling for combustion of solid fuels. International Journal of Greenhouse Gas Control 3(1):11-19.
Mccabe, W.L., Smith, J.C., and Harriott, P., 1993. Unit operations of chemical engineering. Volume 5. McGraw-Hill New York.
Mei, D., Zhao, H., and Yan, S., 2018. Kinetics model for the reduction of Fe2O3/Al2O3 by CO in Chemical Looping Combustion. Chemical Engineering and Processing - Process Intensification 124:137-146.
Metz, B., Davidson, O., De Coninck, H., Loos, M., and Meyer, L.
2005 IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change, Geneva (Switzerland). Working Group III.
Mills, S., 2012. Coal-fired CCS demonstration plants, 2012. CCC/207. IEA Clean Coal Centre, London, UK.
Miya, K., and Otomo, J., 2017. Improvements in reaction kinetics and stability of ilmenite as oxygen carrier by surface modification with calcium titanate in redox cycles of chemical-looping systems. Chemical Engineering Journal 327:257-267.
Moghtaderi, B., and Song, H., 2010. Reduction Properties of Physically Mixed Metallic Oxide Oxygen Carriers in Chemical Looping Combustion. Energy & Fuels 24(10):5359-5368.
Moldenhauer, P., Rydén, M., Mattisson, T., and Lyngfelt, A., 2012. Chemical-looping combustion and chemical-looping with oxygen uncoupling of kerosene with Mn- and Cu-based oxygen carriers in a circulating fluidized-bed 300W laboratory reactor. Fuel Processing Technology 104(Supplement C):378-389.
Moser, P., Schmidt, S., Uerlings, R., Sieder, G., Titz, J.-T., Hahn, A., and Stoffregen, T., 2011. Material testing for future commercial post-combustion capture plants–Results of the testing programme conducted at the Niederaussem pilot plant. Energy Procedia 4:1317-1322.
Mouayd, A.A., Koltsov, A., Sutter, E., and Tribollet, B., 2014. Effect of silicon content in steel and oxidation temperature on scale growth and morphology. Materials Chemistry and Physics 143(3):996-1004.
Nadar, A., Banerjee, A.M., Pai, M., Meena, S.S., Pai, R., Tewari, R., Yusuf, S., Tripathi, A., and Bharadwaj, S., 2017. Nanostructured Fe2O3 dispersed on SiO2 as catalyst for high temperature sulfuric acid decomposition—Structural and morphological modifications on catalytic use and relevance of Fe2O3-SiO2 interactions. Applied Catalysis B: Environmental 217:154-168.
Nandy, A., Loha, C., Gu, S., Sarkar, P., Karmakar, M.K., and Chatterjee, P.K., 2016. Present status and overview of Chemical Looping Combustion technology. Renewable and Sustainable Energy Reviews 59:597-619.
Naqvi, R., and Bolland, O., 2007. Multi-stage chemical looping combustion (CLC) for combined cycles with CO2 capture. International Journal of Greenhouse Gas Control 1(1):19-30.
Nasa, 2017. Global climate change, Vital Sign of the Plant.
Nasagiss, 2017. Global surface temperature change.
Netl, 1999. Wabash River Syngas Compostion.
Ngsa, 2017. Natural gas: Essential to a lower carbon future. Nature Gas Supply Association.
Noaaesrl, 2017. Trend in atmospheric Carbon Dioxide.
O'reilly, J., and Mosher, R., 1983. Functional groups in carbon black by FTIR spectroscopy. Carbon 21(1):47-51.
Ohlemüller, P., Alobaid, F., Gunnarsson, A., Ströhle, J., and Epple, B., 2015. Development of a process model for coal chemical looping combustion and validation against 100kW th tests. Applied Energy 157:433-448.
Ortiz, M., Gayán, P., Luis, F., García-Labiano, F., Abad, A., Pans, M.A., and Adánez, J., 2011. Hydrogen production with CO2 capture by coupling steam reforming of methane and chemical-looping combustion: use of an iron-based waste product as oxygen carrier burning a PSA tail gas. Journal of Power Sources 196(9):4370-4381.
Osanai, Y., Tissue, D.T., Bange, M.P., Braunack, M.V., Anderson, I.C., and Singh, B.K., 2017. Interactive effects of elevated CO2, temperature and extreme weather events on soil nitrogen and cotton productivity indicate increased variability of cotton production under future climate regimes. Agriculture, Ecosystems & Environment 246:343-353.
Osha, 2006. Safety and Health Topics: Hydrogen Sulfide. Occupational Safety and Health Administration, United States Department of Labor.
Pans, M.A., Gayán, P., Abad, A., García-Labiano, F., De Diego, L.F., and Adánez, J., 2013. Use of chemically and physically mixed iron and nickel oxides as oxygen carriers for gas combustion in a CLC process. Fuel Processing Technology 115:152-163.
Patnaik, P., and Dean, J.A., 2004. Dean's analytical chemistry handbook. McGraw-Hill.
Petrakopoulou, F., Boyano, A., Cabrera, M., and Tsatsaronis, G., 2011. Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology. International Journal of Greenhouse Gas Control 5(3):475-482.
Prochazka, S., Johnson, C.A., and Giddings, R.A.
1975 Investigation of Ceramics for High Temperature Turbine Components. GENERAL ELECTRIC CORPORATE RESEARCH AND DEVELOPMENT SCHENECTADY NY.
Reddy, L., Reddy, U., Reddy, R., Ar, T., and Reddy, R.S., 2015. XRD, TEM, EPR, IR and Nonlinear Optical Studies of Yellow Ochre. Journal of Lasers, Optics & Photonics.
Richter, H.J., and Knoche, K.F., 1983. Reversibility of combustion processes. ACS Publications.
Rydén, M., and Lyngfelt, A., 2006. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion. International Journal of Hydrogen Energy 31(10):1271-1283.
Ryu, H.-J., Bae, D.-H., and Jin, G.-T., 2003. Effect of temperature on reduction reactivity of oxygen carrier particles in a fixed bed chemical-looping combustor. Korean Journal of Chemical Engineering 20(5):960-966.
Ryu, H.-J., Bae, D.-H., Jo, S.-H., and Jin, G.-T., 2004. Reaction characteristics of Ni and NiO based oxygen carrier particles for chemical-looping combustor. Korean Chemical Engineering Research 42(1):107-114.
Scala, F., 2013. Fluidized bed technologies for near-zero emission combustion and gasification. Elsevier.
Schneider, F., and Rieman Iii, W., 1937. The Mechanism of Coprecipitation of Anions by Barium Sulfate1. Journal of the American Chemical Society 59(2):354-357.
Schnellmann, M.A., Heuberger, C.F., Scott, S.A., Dennis, J.S., and Mac Dowell, N., 2018. Quantifying the role and value of chemical looping combustion in future electricity systems via a retrosynthetic approach. International Journal of Greenhouse Gas Control 73:1-15.
Shen, L., Gao, Z., Wu, J., and Xiao, J., 2010. Sulfur behavior in chemical looping combustion with NiO/Al2O3 oxygen carrier. Combustion and Flame 157(5):853-863.
Shinada, O., Yamada, A., and Koyama, Y., 2002. The development of advanced energy technologies in Japan: IGCC: A key technology for the 21st century. Energy Conversion and Management 43(9):1221-1233.
Siefers, A., Wang, N., Sindt, A., Dunn, J., Mcelvogue, J., Evans, E., and Ellis, T., 2010. A novel and cost-effective hydrogen sulfide removal technology using tire derived rubber particles. Proceedings of the Water Environment Federation 2010(12):4597-4622.
Sing, K.S., 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied Chemistry 57(4):603-619.
Siriwardane, R., Tian, H., Simonyi, T., and Poston, J., 2013. Synergetic effects of mixed copper–iron oxides oxygen carriers in chemical looping combustion. Fuel 108:319-333.
Soo, S.L., 1974. Formation of bubbles in a fluidized bed. Powder Technology 10(4):211-216.
Stobbe, E.R., De Boer, B.A., and Geus, J.W., 1999. The reduction and oxidation behaviour of manganese oxides. Catalysis Today 47(1):161-167.
Stocker, T., 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Stoffregen, T., Rigby, S., Jovanovic, S., and Krishnamurthy, K.R., 2014. Pilot-scale Demonstration of an Advanced Aqueous Amine-based Post-combustion Capture Technology for CO2 Capture from Power Plant Flue Gases. Energy Procedia 63:1456-1469.
Stuer, M., Zhao, Z., and Bowen, P., 2012. Freeze granulation: Powder processing for transparent alumina applications. Journal of the European Ceramic Society 32(11):2899-2908.
Su, Y.-M., Huang, C.-Y., Chyou, Y.-P., and Svoboda, K., 2017. Sulfidation/regeneration multi-cyclic testing of Fe2O3/Al2O3 sorbents for the high-temperature removal of hydrogen sulfide. Journal of the Taiwan Institute of Chemical Engineers 74:89-95.
Sun, Y., Wu, Y., Tao, L., Shan, H., Wang, G., and Li, C., 2015. Effect of pre-reduction on the performance of Fe2O3/Al2O3 catalysts in dehydrogenation of propane. Journal of Molecular Catalysis A: Chemical 397:120-126.
Suyadal, Y., Erol, M., and Oǧuz, H., 2000. Deactivation model for the adsorption of trichloroethylene vapor on an activated carbon bed. Industrial & Engineering Chemistry Research 39(3):724-730.
Takenaka, S., Serizawa, M., and Otsuka, K., 2004. Formation of filamentous carbons over supported Fe catalysts through methane decomposition. Journal of Catalysis 222(2):520-531.
Tang, M., Xu, L., and Fan, M., 2015. Progress in oxygen carrier development of methane-based chemical-looping reforming: A review. Applied Energy 151:143-156.
Theo, W.L., Lim, J.S., Hashim, H., Mustaffa, A.A., and Ho, W.S., 2016. Review of pre-combustion capture and ionic liquid in carbon capture and storage. Applied Energy 183:1633-1663.
Tilland, A., Prieto, J., Petitjean, D., and Schaer, E., 2016. Study and analyses of a CLC oxygen carrier degradation mechanism in a fixed bed reactor. Chemical Engineering Journal 302(Supplement C):619-632.
Tymoczko, J.L., Berg, J.M., and Stryer, L., 2011. Biochemistry: a short course. Macmillan.
Van Ommen, J.R., and Ellis, N., 2010. JMBC/OSPT course Particle Technology 2010.
Wagner, C.D., 1979. Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy. Perkin-Elmer.
Wang, B., Yan, R., Lee, D.H., Zheng, Y., Zhao, H., and Zheng, C., 2011. Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis. Journal of analytical and applied pyrolysis 91(1):105-113.
Wang, K., Tian, X., and Zhao, H., 2016. Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier. Applied Energy 166:84-95.
Wang, P., Means, N., Howard, B.H., Shekhawat, D., and Berry, D., 2018. The reactivity of CuO oxygen carrier and coal in Chemical-Looping with Oxygen Uncoupled (CLOU) and In-situ Gasification Chemical-Looping Combustion (iG-CLC). Fuel 217:642-649.
Wang, P., Means, N., Shekhawat, D., Berry, D., and Massoudi, M., 2015. Chemical-looping combustion and gasification of coals and oxygen carrier development: a brief review. Energies 8(10):10605-10635.
Wang, T., and Stiegel, G.J., 2016. Integrated Gasification Combined Cycle (IGCC) Technologies. Woodhead Publishing.
Wang, Z., Liu, Y., Wu, J., He, T., Li, J., and Wu, J., 2014. Preparation of large granular Cu-based oxygen carriers by mechanical mixing for packed bed chemical-looping combustion. Energy & Fuels 28(12):7662-7671.
Wang, Z., Yang, J., Li, Z., and Xiang, Y., 2009. Syngas composition study. Frontiers of Energy and Power Engineering in China 3(3):369-372.
Wawrzinek, K., and Keller, C., Year. of Conference of Conference. Industrial Hydrogen Production and Technology. FuncHy-Workshop, Karlsruhe, 2007. Vol. 5, pp. 7.
Weinstock, B., and Niki, H., 1972. Carbon monoxide balance in nature. Science 176(4032):290-292.
Wen, C., and Yu, Y., 1966. A generalized method for predicting the minimum fluidization velocity. AIChE Journal 12(3):610-612.
Xie, K., Lu, Z., Huang, H., Lu, W., Lai, Y., Li, J., Zhou, L., and Liu, Y., 2012. Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries. Journal of Materials Chemistry 22(12):5560-5567.
Yamashita, T., and Hayes, P., 2008. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied surface science 254(8):2441-2449.
Zafar, Q., Mattisson, T., and Gevert, B., 2005. Integrated hydrogen and power production with CO2 capture using chemical-looping reforming redox reactivity of particles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support. Industrial & Engineering Chemistry Research 44(10):3485-3496.
Zafar, Q., Mattisson, T., and Gevert, B., 2006. Redox investigation of some oxides of transition-state metals Ni, Cu, Fe, and Mn supported on SiO2 and MgAl2O4. Energy & Fuels 20(1):34-44.
Zha, J., and Roggendorf, H., 1991. Sol–gel science, the physics and chemistry of sol–gel processing, Ed. by CJ Brinker and GW Scherer, Academic Press, Boston 1990, xiv, 908 pp., bound—ISBN 0‐12‐134970‐5. Advanced Materials 3(10):522-522.
Zhang, C., Oliaee, S.N., Hwang, S.Y., Kong, X., and Peng, Z., 2015a. A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology. Nano letters 16(1):164-169.
Zhang, H., Liu, X., Hong, H., and Jin, H., 2018. Characteristics of a 10 kW honeycomb reactor for natural gas fueled chemical-looping combustion. Applied Energy 213:285-292.
Zhang, Y., Doroodchi, E., and Moghtaderi, B., 2015b. Reduction kinetics of Fe2O3/Al2O3 by ultralow concentration methane under conditions pertinent to chemical looping combustion. Energy & Fuels 29(1):337-345.
Zheng, X., Che, L., Hao, Y., and Su, Q., 2016. Cycle performance of Cu-based oxygen carrier based on a chemical-looping combustion process. Journal of Energy Chemistry 25(1):101-109.
Zhou, Z., Han, L., and Bollas, G.M., 2014. Overview of chemical-looping reduction in fixed bed and fluidized bed reactors focused on oxygen carrier utilization and reactor efficiency. Aerosol and Air Quality Research 14(2):559-571.
Zhu, L., He, Y., Li, L., and Wu, P., 2018. Tech-economic assessment of second-generation CCS: Chemical looping combustion. Energy 144:915-927.
Zhu, M., Chen, S., Ma, S., and Xiang, W., 2017. Carbon formation on iron-based oxygen carriers during CH4 reduction period in Chemical Looping Hydrogen Generation process. Chemical Engineering Journal 325:322-331.
大田裕之, 栗田大史, 中川隆史, 河野龍興, 山根史之, and 上滝直樹, 2016. 再生可能エネルギー由来の水素によるエネルギーシステム. 紙パ技協誌 70(6):589-594.
朱信, and 曾明宗, 1991. 煤炭氣化複循環發電機組可行性之研究. 工業技術研究院能源與資源研究所、台灣電力公司電力綜合研究所研究計劃期末報告.
沈百淳, 2011. HCl 對 Fe2O3/SiO2 載氧體於高溫化學環路燃燒之影響. 成功大學環境工程學系學位論文:1-186.
徐恆文, 2004. 煤炭氣化發電之能源優勢. 工業技術研究院.
陳彥樵, 2010. 以 Fe2O3/SiO2 吸收劑高溫去除硫化氫及氯化氫之研究. 成功大學環境工程學系學位論文:1-144.
校內:2023-07-01公開