簡易檢索 / 詳目顯示

研究生: 陳士元
Chen, Shih-Yuan
論文名稱: 以溶液式製備鋯鈦酸鍶閘極絕緣層於五環素薄膜電晶體
Solution Processed Strontium Zirconate Titanate as Gate Insulators for Pentacene-based Thin Film Transistors
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 88
中文關鍵詞: 有機薄膜電晶體五環素高介電材料多層介電層
外文關鍵詞: organic thin film transistor, pentacene, high dielectric constant material, multi-layered dielectric
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用溶液式高介電材料鋯鈦酸鍶應用於五環素有機薄膜電晶體,並利用多層溶液旋塗手法,有效降低漏電流,並且能改善介電層表面粗糙度以及表面能,使得最初幾層的五環素排列與成長狀況提升。接著利用拉曼光譜分析五環素半導體層,得知成長於雙層介電層之五環素分子之間的交互作用較為強烈且緊密。最後搭配AFM與XRD分析,驗證以雙層介電層成長五環素之電晶體具有較佳的五環素薄膜品質,因此得到良好之電晶體特性:高場效載子移動率(11.27 cm2/V·s)、低次臨界效應(224 mV/decade)、以及高電流開關比(1.28×104)。

    The solution-processed high-κ strontium zirconate titanate (SZT) as gate dielectric for pentacene-based organic thin film transistor (OTFT) applications was demonstrated. In this study, multi-layered SZT process was utilized to not only suppress the leakage current, but also improve the surface smoothness and surface energy, which enhance the growth and arrangement of pentacene in first few layers. Then, Raman spectra was used to analyze the pentacene layer, showing that the intermolecular interaction was stronger for the pentacene grown on double-layered SZT dielectric. Finally, the fact that the double-layered SZT was beneficial for better quality of pentacene was confirmed by AFM and XRD analysis, and thus good performance of the transistors was exhibited, with high field-effect mobility of 11.27 cm2/V·s, low subthreshold swing of 224 mV/dec, and high on-off ratio of 1.28×104.

    摘要 I Abstract II 誌謝 IV Contents VII Figure Captions IX Table Captions XI Chapter 1 Introduction 1 1-1 Introduction to Organic Semiconductors 1 1-2 Development of Organic Thin Film Transistors (OTFTs) 3 1-3 Advantages of OTFTs 5 1-4 Background and Motivation 9 1-5 Thesis Organization 10 Chapter 2 Principle and Concept of OTFTs 11 2-1 Organic Semiconductor Materials 11 2-2 Charge Carrier Transport 14 2-3 OTFT Structures 19 2-4 Operation Mode 21 2-5 Important Parameters of OTFTs 24 2-5-1 Field-Effect Mobility 24 2-5-2 Threshold Voltage 24 2-5-3 Subthreshold Swing 25 2-5-4 On-Off Current Ratio 26 Chapter 3 Experiment Materials and Equipment 28 3-1 Experiment Materials 28 3-1-1 Experiment Materials 28 3-1-2 Solution Preparation 32 3-2 Experiment Equipment 33 3-2-1 Physical Vapor Deposition (PVD) 33 3-2-2 Thermal Evaporator 36 3-2-3 Spin Coater 38 3-2-4 UV-Ozone Cleaner 39 3-3 Measurement Systems 40 3-3-1 Current-Voltage (I-V) Measurement 40 3-3-2 Capacitance-Voltage (C-V) Measurement 40 3-3-3 Atomic Force Microscope (AFM) 40 3-3-4 X-ray Diffraction (XRD) 41 Chapter 4 Fabrication and Characterization 43 4-1 Device Fabrication 43 4-1-1 Substrate Cleaning 43 4-1-2 Gate Electrode 44 4-1-3 Insulator Layer 44 4-1-4 Active layer 45 4-1-5 Source and Drain electrodes 45 4-2 Analysis of SZT Insulator Films 49 4-2-1 X-ray Diffraction (XRD) 49 4-2-2 Atomic Force Microscope (AFM) 51 4-2-3 Surface Energy 53 4-2-4 Surface Trap Density 56 4-3 Analysis of Semiconductor Films 57 4-3-1 Atomic Force Microscope (AFM) of 3nm Pentacene Films 57 4-3-2 X-ray Diffraction (XRD) 59 4-3-3 Raman Spectra 61 4-3-4 Atomic Force Microscope (AFM) of Top Pentacene 65 4-4 Electrical Properties 67 4-4-1 Metal-Insulator-Metal (MIM) Measurement 67 4-4-2 Current-Voltage (I-V) Characteristics 72 4-5 Comparison with Other Works 78 Chapter 5 Conclusion and Future Prospect 80 5-1 Conclusions 80 5-2 Future Prospect 81 References 82

    [1] J. M. Shaw and P. F. Seidler, “Organic electronics: Introduction,” IBM Journal of Research and Development, vol. 45, no. 1, pp. 3-10, January 2001.
    [2] Wolfgang Brütting, “Organic Semiconductors,” 2005.
    [3] Antonio Facchett, “Semiconductors for organic transistors,” Materials Today, vol. 10, no. 3, pp. 28-37, March 2007.
    [4] Heinz Bässler and Anna Köhler, “Charge Transport in Organic Semiconductors,” Topics in Current Chemistry, vol. 312, pp. 1-65, October 2011.
    [5] The Grandinetti Group. “Orbital Hybridization,” [Online]. Available: http://www.grandinetti.org/orbital-hybridization
    [6] Paul K. Weimer, “The TFT - A New Thin-Film Transistor,” Proceedings of the IRE, vol. 50, no. 6, pp. 1462-1469, March 1962.
    [7] A. Tsumura, H. Koezuka and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, vol. 49, no. 18, pp. 1210-1212, September 1986.
    [8] Colin Reese, Mark Roberts, Mang-mang Ling, and Zhenan Bao, “Organic thin film transistors,” Materials Today, vol. 7, no. 9, pp. 20-27, September 2004.
    [9] Oana D. Jurchescu, Mihaita Popinciuc, Bart J. van Wees, and Thomas T. M. Palstra, “Interface-Controlled, High-Mobility Organic Transistors,” Advanced Materials, vol. 19, no. 5, pp. 688-692, March 2007.
    [10] M. Yamagishi, J. Takeya1, Y. Tominari1, Y. Nakazawa1, T. Kuroda, S. Ikehata, M. Uno, T. Nishikawa and T. Kawase, “High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators,” Applied Physics Letters, vol. 90, no. 18, pp. 182117-1 - 182117-3, March 2007.
    [11] Raghu Das and Dr Peter Harrop. (2015). “Printed, Flexible and Organic Electronics Report,” [Online]. Available: http://www.idtechex.com/research/reports/printed-organic-and-flexible-electronics-forecasts-players-and-opportunities-2015-2025-000425.asp
    [12] S. Lai , M. Demelas , G. Casula , P. Cosseddu , M. Barbaro and A. Bonfi glio, “Ultralow Voltage, OTFT-Based Sensor for Label-Free DNA Detection,” Advanced Materials, vol. 25, no. 1, pp. 103-107, January 2013.
    [13] Wei Wang, Dongge Ma, and Qiang Gao, “Optical Programming/Electrical Erasing Memory Device Based on Low-Voltage Organic Thin-Film Transistor,” IEEE Transactions On Electron Devices, vol. 59, no. 5, pp. 1510-1513, May 2012.
    [14] Sony Corporation. (2007). “Sony's world's first 16.7 million color flexible OLED,” [Online]. Available: http://www.sony.co.jp/SonyInfo/News/Press/200705/07-053/index.html
    [15] Neil Savage. (2011). “Flexible organic photovoltaic cells will be cheaper and more environmentally friendly than silicon ones.,” [Online]. Available: http://www.nature.com/naturejobs/science/articles/10.1038%2Fnj7374-557a
    [16] Jerzy Ruzyllo. “Semiconductor Glossary,” [Online]. Available: http://www.semi1source.com/glossary/default.asp?searchterm=dielectric
    [17] Zhao Yang, Haifeng Pu, Can Cui, Li Zhang, Chengyuan Dong, and Qun Zhang, “Solution-Processed Indium-Zinc-Oxide Thin Film Transistors With High-k Magnesium Titanium Oxide Dielectric,” IEEE Transactions on Electron Devices, vol. 35, no. 5, pp. 557-559, May 2014.
    [18] G. Reyna-García, M. García-Hipólito, J. Guzmán-Mendoza, M. Aguilar-Frutis and C. Falcony, “Electrical, optical and structural characterization of high-k delectric ZrO2 thin films deposited by the pyrosol technique,” Journal of Materials Science: Materials in Electronics, vol. 15, no. 7, pp. 439-446, July 2004.
    [19] Juan Peng, Chenhang Sheng, Jifeng Shi, Xifeng Li and Jianhua Zhang, “High-k titanium–aluminum oxide dielectric films prepared by inorganic–organic hybrid solution,” Journal of Sol-Gel Science and Technology, vol. 71, no. 3, pp. 458-463, May 2014.
    [20] W. Tsai, R.J. Carter, H. Nohira, M. Caymax, T. Conard, V. Cosnier, S. DeGendt, M. Heyns, J. Petry, O. Richard, W. Vandervorst, E. Young, C. Zhao, J. Maes, M. Tuominen, W.H. Schulte, E. Garfunkel and T. Gustafsson, “Surface preparation and interfacial stability of high-k dielectrics deposited by atomic layer chemical vapor deposition,” Journal of Sol-Gel Science and Technology, vol. 65, no. 3, pp. 259-272, March 2003.
    [21] Xiao-Hong Zhang, Benoit Domercq, Xudong Wang, Seunghyup Yoo, Takeshi Kondo, Zhong Lin Wang and Bernard Kippelen, “High-performance pentacene field-effect transistors using Al2O3 gate dielectrics prepared by atomic layer deposition (ALD),” Organic Electronics, vol. 8, no. 6, pp. 718-726, December 2007.
    [22] Feri Adriyanto, Chih-Kai Yang, Tsung-Yu Yang, Chia-Yu Wei, and Yeong-Her Wang, “Solution-Processed Barium Zirconate Titanate for Pentacene-Based Thin-Film Transistor and Memory,” IEEE Electron Device Letters, vol. 34, no. 10, pp. 1241-1243, October 2013.
    [23] He Yan, Zhihua Chen, Yan Zheng, Christopher Newman, Jordan R. Quinn, Florian Dötz, Marcel Kastler and Antonio Facchetti, “A high-mobility electron-transporting polymer for printed transistors,” Nature, vol. 457, no. 7230, pp. 679-686, February 2009.
    [24] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature, vol. 401, no. 14, pp. 685-688, October 1999.
    [25] R. Joseph Kline, Michael D. McGehee, Ekaterina N. Kadnikova, Jinsong Liu, Jean M. J. Fréchet, and Michael F. Toney, “Dependence of Regioregular Poly(3-hexylthiophene) Film Morphology and Field-Effect Mobility on Molecular Weight,” Macromolecules, vol. 38, no. 8, pp. 3312-3319, March 2005.
    [26] M. Halik, H. Klauk, U. Zschieschang, G. Schmid, S. Ponomarenko, S. Kirchmeyer and W. Weber, “Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors,” Advanced Materials, vol. 15, no. 11, pp. 917-922, June 2003.
    [27] Emanuele Orgiu, Appan Merari Masillamani, Jörn-Oliver Vogel, Emanuele Treossi, Adam Kiersnowski, Marcel Kastler, Wojciech Pisula, Florian Dötz, Vincenzo Palermo and Paolo Samorì, “Enhanced mobility in P3HT-based OTFTs upon blending with a phenylene–thiophene–thiophene–phenylene small molecule,” Chemical Communications, vol. 48, no. 10, pp. 1562-1564, November 2011.
    [28] Ute Zschieschang, Robert Hofmockel, Reinhold Rödel, Ulrike Kraft, Myeong Jin Kang, Kazuo Takimiya, Tarek Zaki, Florian Letzkus, Jörg Butschke, Harald Richter, Joachim N. Burghartz and Hagen Klauk, “Megahertz operation of flexible low-voltage organic thin-film transistors,” Organic Electronics, vol. 14, no. 6, pp. 1516-1520, June 2013.
    [29] Chia-Yu Wei, Shu-Hao Kuo, Yu-Ming Hung, Wen-Chieh Huang, Feri Adriyanto and Yeong-Her Wang, “High-Mobility Pentacene-Based Thin-Film Transistors With a Solution-Processed Barium Titanate Insulator,” IEEE Electron Device Letters, vol. 32, no. 1, pp. 90-92, June 2013.
    [30] Hyeok Moo Lee, Hanul Moon, Hyo-Sik Kim, Yong Nam Kim, Sung-Min Choi, Seunghyup Yoo and Sung Oh Cho, “Abrupt heating-induced high-quality crystalline rubrene thin films for organic thin-film transistors,” Organic Electronics, vol. 12, no. 8, pp. 1446-1453, August 2011.
    [31] Hoon-Seok Seo, Jeong-Do Oh, Dae-Kyu Kim, Eun-Sol Shin and Jong-Ho Choi, “π-Conjugated organic-based devices with different layered structures produced by the neutral cluster beam deposition method and operating conduction mechanism,” Journal of Physics D: Applied Physics, vol. 45, no. 50, pp. 505108, December 2012.
    [32] Karl Leo. “What are organic semiconductors,” [Online]. Available: http://www.iapp.de/orgworld/?Basics:What_are_organic_semiconductors
    [33] Hoi Nok Tsao and Klaus Müllen, “Improving polymer transistor performance via morphology control,” Chemical Society Reviews, vol. 39, no. 7, pp. 2372-2386, April 2010.
    [34] M. C. J. M. Vissenberg and M. Matters, “Theory of the field-effect mobility in amorphous organic transistors,” Physical Review B, vol. 57, no. 20, pp. 12964-12967, May 1998.
    [35] Gilles Horowitz, Riadh Hajlaoui and Philippe Delannoy, “Temperature Dependence of the Field-Effect Mobility of Sexithiophene. Determination of the Density of Traps,” Journal de Physique. III, vol. 5, no. 4, pp. 355-371, April 1995.
    [36] M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals,” Clarendon Press, Oxford, 1982.
    [37] Paul von Ragué Schleyer, Mariappan Manoharan, Haijun Jiao, and Frank Stahl, “The Acenes: Is There a Relationship between Aromatic Stabilization and Reactivity?,” Organic Letters, vol. 3, no. 23, pp. 3643-3646, August 2001.
    [38] P. Cosseddu, and A. Bonfiglio, “A comparison between bottom contact and top contact all organic field effect transistors assembled by soft lithography,” Thin Solid Films, vol. 515, no. 19, pp. 7551-7555, July 2007.
    [39] Brijesh Kumar, Poornima Mittal, Y. S. Negi, and B. K. Kaushik, “Top and Bottom Gate Polymeric Thin Film Transistor Analysis through Two Dimensional Numerical Device Simulation,” Advances in Intelligent and Soft Computing, vol. 131, pp. 855-864, December 2011.
    [40] Hagen Klauk, “Organic thin-film transistors,” Chemical Society Reviews, vol. 39, no. 7, pp. 2643-2666, April 2010.
    [41] Feng Pan, Hongkun Tian, Xianrui Qian, Lizhen Huang, Yanhou Geng, and Donghang Yan, “High performance vanadyl phthalocyanine thin-film transistors based on fluorobenzene end-capped quaterthiophene as the inducing layer,” Organic Electronics, vol. 12, no. 8, pp. 1358-1363, August 2011.
    [42] Clear Metals Inc.. “Technology,” [Online]. Available: http://clearmetalsinc.com/technology/
    [43] Shabbir A Bashar. “Metallisation by Resistive Thermal Evaporation,” [Online]. Available: http://www.betelco.com/sb/phd/ch3/c34.html
    [44] Wei Wang, Guifang Dong, and Liduo Wang, Yong Qiu, “Pentacene thin-film transistors with sol–gel derived amorphous Ba0.6Sr0.4TiO3 gate dielectric,” Microelectronic Engineering, vol. 85, no. 2, pp. 414-418, February 2008.
    [45] Soeren Steudel, Stijn De Vusser, Stijn De Jonge, Dimitri Janssen, Stijn Verlaak, Jan Genoe, and Paul Heremans, “Influence of the dielectric roughness on the performance of pentacene transistors,” Applied Physics Letters, vol. 85, no. 19, pp. 4400-4402, November 2004.
    [46] D. K. Owens and R. C. Wendt, “Estimation of the Surface Free Energy of Polymers,” Journal of Applied Polymer Science, vol. 13, no. 8, pp. 1741-1747, August 1969.
    [47] M. Yoshida, S. Uemura, T. Kodzasa, T. Kamata, M. Matsuzawa, and T. Kawai, “Surface Potential Control of an Insulator Layer for the High Performance Organic FET,” Synthetic Metals, vol. 137, no. 1-3, pp. 967-968 (2003).
    [48] Jan H. Van Der Merwe, “Theoretical Considerations in Growing Uniform Epilayers,” Interface Science, vol. 1, no. 1, pp. 77-86, February 1993.
    [49] S. Young Park, Taegeun Kwon, and Hong H. Lee, “Transfer Patterning of Pentacene for Organic Thin-Film Transistors,” Advanced Materials, vol. 18, no. 14, pp. 1861-1864, July 2006.
    [50] Seung-Yeon Kwak, Chaun Gi Choi, and Byeong-Soo Bae, “Effect of Surface Energy on Pentacene Growth and Characteristics of Organic Thin-Film Transistors,” Electrochemical and Solid-State Letters, vol. 12, no. 8, pp. G37-G39, May 2009.
    [51] Yuanyuan Hu, Qiong Qi, and Chao Jiang, “Influence of different dielectrics on the first layer grain sizes and its effect on the mobility of pentacene-based thin-film transistors,” Applied Physics Letters, vol. 96, no. 13, pp. 133311-1 - 133111-3, April 2010.
    [52] Qiong Qi, Aifang Yu, Peng Jiang, Chao Jiang, “Enhancement of carrier mobility in pentacene thin-film transistor on SiO2 by controlling the initial film growth modes,” Applied Surface Science, vol. 255, no. 9, pp. 5096-5099, December 2008.
    [53] Bayram Gunduz, and Fahrettin Yakuphanoglu, “Effects of UV and white light illuminations on photosensing properties of the 6,13-bis(triisopropylsilylethynyl)pentacene thin film transistor,” Sensors and Actuators A: Physical, vol. 178, pp. 141-153, May 2012.
    [54] H. L. Cheng, W. Y. Chou, C. W. Kuo, F. C. Tang, and Y. W. Wang, “Electric field-induced structural changes in pentacene-based organic thin-film transistors studied by in situ micro-Raman spectroscopy,” Applied Physics Letters, vol. 88, no. 16, pp. 161918-1 - 161918-4, April 2006.
    [55] Christine C. Mattheus, Gilles A. de Wijs, Robert A. de Groot, and Thomas T. M. Palstra, “Modeling the Polymorphism of Pentacene,” Journal of the American Chemical Society, vol. 125, no. 20, pp. 6323-6330, April 2003.
    [56] Claudia Ambrosch-Draxl, Dmitrii Nabok, Peter Puschnig and Christian Meisenbichler, “The role of polymorphism in organic thin films: oligoacenes investigated from first principles,” New Journal of Physics, vol. 11, pp. 120510, December 2009.
    [57] T. Ungár, “Microstructural parameters from X-ray diffraction peak broadening,” Scripta Materialia, vol. 51, no. 8, pp. 777-781, June 2004.
    [58] Yoshinobu Hosoi, Daniel Martínez Deyra, Kazuhiro Nakajima, and Yukio Furukawa, “Micro-Raman Spectroscopy on Pentacene Thin-Film Transistors,” Molecular Crystals and Liquid Crystals, vol. 491, no. 1, pp. 371-323, September 2010.
    [59] T. Jentzsch, H.J. Juepner, K.-W. Brzezinka, and A. Lau, “Efficiency of optical second harmonic generation from pentacene films of different morphology and structure,” Thin Solid Films, vol. 315, no. 1-2, pp. 273-280, September 1997.
    [60] Horng-Long Cheng, Wei-Yang Chou, Chia-Wei Kuo, Yu-Shen Mai, Fu-Ching Tang, and Szu-Hao Lai, “Studies of polycrystalline pentacene thin-film transistors at the microscopic level,” SPIE Proceedings, vol. 6336, pp. 63361B-1 - 63361B-111, August 2006.
    [61] Christian Westermeier, Adrian Cernescu, Sergiu Amarie, Clemens Liewald, Fritz Keilmann and Bert Nickel, “Sub-micron phase coexistence in small-molecule organic thin films revealed by infrared nano-imaging,” Nature Communications, Article number: 4101, June 2014.
    [62] Liang-Yun Chiu, Horng-Long Cheng, Hsin-Yuan Wang, Wei-Yang Chou and Fu-Ching Tang, “Manipulating the ambipolar characteristics of pentacene-based field-effect transistors,” Journal of Materials Chemistry C, vol. 2, no. 10, pp. 1823-1829, December 2013.
    [63] Horng-Long Cheng, Xin-Wei Liang, Wei-Yang Chou, Yu-Shen Mai, Chou-Yu Yang, Li-Ren Chang, and Fu-Ching Tang, “Raman spectroscopy applied to reveal polycrystalline grain structures and carrier transport properties of organic semiconductor films: Application to pentacene-based organic transistors,” Chemical Society Reviews, vol. 10, no. 2, pp. 289-298, April 2009.
    [64] A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober and H. Maresch, “Influence of grain sizes on the mobility of organic thin-film transistors,” Applied Physics Letters, vol. 86, no. 26, pp. 263501-1 - 263501-3, June 2005.
    [65] J. Tardy, M. Erouel, A.L. Deman, A. Gagnaire, V. Teodorescu, M.G. Blanchin, B. Canut, A. Barau, and M. Zaharescu, “Organic thin film transistors with HfO2 high-k gate dielectric grown by anodic oxidation or deposited by sol–gel,” Microelectronics Reliability, vol. 47, no. 2-3, pp. 372-377, February-March 2007.
    [66] A. Di Carlo, F. Piacenza, A. Bolognesi, B. Stadlober and H. Maresch, “Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors,” Applied Physics Letters, vol. 93, no. 2, pp. 013302-1 - 013302-3, July 2008.
    [67] Barbara Stadlober, Martin Zirkl, Michael Beutl, and Günther Leising, “High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric,” Applied Physics Letters, vol. 86, no. 24, pp. 242902-1 - 242902-3, June 2005.
    [68] Chao-Te Liu, Wen-Hsi Lee, and Jui-Feng Su, “Pentacene-Based Thin Film Transistor with Inkjet-Printed Nanocomposite High-K Dielectrics,” Active and Passive Electronic Components, vol. 2012, pp. 921738-1 - 921738-7, 2012.
    [69] Cecile Jung, Ashok Maliakal, Alexander Sidorenko, and Theo Siegrist, “Pentacene-based thin film transistors with titanium oxide-polystyrene/polystyrene insulator blends: High mobility on high K dielectric films,” Applied Physics Letters, vol. 90, no. 6, pp. 062111-1 - 062111-3, February 2007.
    [70] Yu-Chi Chang, Chia-Yu Wei, Yen-Yu Chang, Tsung-Yu Yang, and Yeong-Her Wang, “High-Mobility Pentacene-Based Thin-Film Transistors With Synthesized Strontium Zirconate Nickelate Gate Insulators,” IEEE Transactions On Electron Devices, vol. 60, no. 12, pp. 4234-4239, December 2013.
    [71] Yu-Chang Li, Yu-Ju Lin, Chia-Yu Wei, Dei-Wei Chou, Chun-Ho Tsao, and Yeong-Her Wang, “Influence of inserting a thin fullerene layer on pentacene organic thin-film transistor,” Applied Physics Letters, vol. 100, no. 11, pp. 113306-1 - 113306-4, March 2012.
    [72] Rocío Ponce Ortiz, Antonio Facchetti, and Tobin J. Marks, “High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors,” Chemical Reviews, vol. 110, no. 1, pp. 205-239, January 2010.

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE