| 研究生: |
雲大祐 Yun, Ta-Yu |
|---|---|
| 論文名稱: |
Palladin 200 kDa 異構型之N’端蛋白質交互作用之研究 Study of N’-terminal interacting partners of palladin 200 kDa isoform |
| 指導教授: |
王浩文
Wang, Hao-Ven |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | palladin 、蛋白質交互作用 、細胞骨架 、細胞張力絲 |
| 外文關鍵詞: | palladin, protein-protein interaction, cytoskeleton, stress fibers |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞骨架(cytoskeleton)在真核細胞(eukaryotic cells)中是一種動態平衡(dynamic)並且由許多蛋白質組成的複雜網路型結構,主要由三大成員所構成:microtubules,intermediate filaments 以及actin filaments。細胞骨架的主要供功能是維持與改變細胞的形狀與行為,並藉由與其他相關蛋白質的交互作用進而調控細胞的附著(adhesion)、擴張(spreading)與移行(migration)。然而細胞骨架相關蛋白也參與了部分訊息傳遞步驟,藉由吸引許多相關蛋白質聚集,並與一些在細胞膜周圍的受器蛋白產生交互作用,進而對細胞外或是細胞內的環境刺激做出反應。其中一個細胞骨架相關蛋白質palladin在調控細胞貼附與細胞張力絲(stress fibers)的形成中扮演重要的角色。常見的幾種同功異構型palladin,依其分子量可分為200kDa,140kDa以及90-92kDa,在先前有關palladin的蛋白質交互作用之相關研究多侷限於90-92kDa異構型palladin,反而對於 palladin 全長 200kDa 異構型扣除掉 90-92kDa 異構型之後剩下的 N’ 端片段[以下簡稱 palladin(200~90) ] 相關的研究極少,於是我們針對這個區域,利用酵母菌雙雜合系統(Yeast two Hybrid system,Y2H)以及免疫沉澱(Immunoprecipitation, IP)進行一連串的實驗與探討。
The cytoskeleton of eukaryotic cells is a dynamic and complex network which containing three major members: microtubules, intermediate filaments and actin filaments. An important role of cytoskeleton is to maintain the cell shape and to form complex structures to regulate cell adhesion and migration by interacting with other proteins. The cytoskeleton also participates part of signal transductions to reflect inner- and outer- cell environmental stimulates by recruit cytoskeleton associated proteins and interact with receptor proteins near the cell membrane. One of cytoskeleton-associated proteins, palladin, plays an important role in regulating cell adhesion and the formation of stress fibers. There are three kinds of isoforms: 200kDa, 140kDa, and 90-92kDa. Most literature of protein-protein interaction of palladin are only about palladin 90-92kDa isform. There is no study of N’-terminal interacting partners of palladin 200 kDa isoform. So we use yeast two hybrid system and immunoprecipitation to characterize the N’-terminal interacting partners of palladin 200 kDa isoform.
Amos, L.A., and Schlieper, D. (2005). Microtubules and maps. Advances in Protein Chemistry 71, 257-298.
Ayscough, K.R. (1998). In vivo functions of actin-binding proteins. Current Opinion in Cell Biology 10, 102-111.
Bang, M.-L., Centner, T., Fornoff, F., Geach, A.J., Gotthardt, M., McNabb, M., Witt, C.C., Labeit, D., Gregorio, C.C., Granzier, H., et al. (2001). The complete gene sequence of titin,expression of an unusual≈ 700-kDa titin isoform, and its interaction with obscurin identifya novel Z-line to I-band linking system. Circulation Research 89, 1065-1072.
Bernas, T., and Dobrucki, A.J. (2002). Mitochondrial and Nonmitochondrial Reduction ofMTT: Interaction of MTT With TMRE, JC-1, and NAO Mitochondrial Fluorescent Probes.Cytometry 47, 236-242.
Boukhelifa, M., Parast, M.M., Bear, J.E., Gertler, F.B., and Otey, C.A. (2004). Palladin is a novel binding partner for Ena/VASP family members. Cell Motility and the Cytoskeleton 58, 17-29.
Boukhelifa, M., Parast, M.M., Valtschanoff, J.G., LaMantia, A.S., Meeke, R.B., and Otey, C.A. (2001). A role for the cytoskeleton-associated protein palladin in neurite outgrowth. Molecular Biology of the Cell 12, 2721-2729.34
C. G. Dos Remedios, D. Chhabra, M. Kekic, I. V. Dedova, M. Tsubakihara, D. A. Berry, a., and Nosworthy, N.J. (2003). Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments. Physiological Reviews 83, 433-473.
Chin, Y.R., and Toker, A. (2010). The actin-bundling protein palladin is an Akt1-specific substrate that regulates breast cancer cell migration. Molecular Cell 38, 333-344.
Dixon, R.D.S., Arneman, D.K., Rachlin, A.S., Sundaresan, N.R., Costello, M.J., Campbell, S.L., and Otey, C.A. (2008). Palladin is an actin cross-linking protein that uses immunoglobulin-like domains to bind filamentous actin. The Journal of Biological Chemistry 283, 6222-6231.
Egelman, E., and Orlova, A. (2001). Two conformations of G-actin related to two conformations of F-actin. Results & Problems in Cell Differentiation 32, 95-101.
Endlich, N., Schordan, E., Cohen, C.D., Kretzler, M., Lewko, B., Welsch, T., Kriz, W., Otey, C.A., and Endlich, K. (2009). Palladin is a dynamic actin-associated protein in podocytesRole of palladin in actin dynamics. Kidney International 75, 214-226.
Goicoechea, S., Arneman, D., Disanza, A., Garcia-Mata, R., Scita, G., and Otey, C.A. (2006). Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. Journal of cell science 119, 3316-3324.
Goicoechea, S.M., Arneman, D., and Otey, C.A. (2008). The role of palladin in actin organization and cell motility. European Journal of Cell Biology 87, 517-525.
Goicoechea, S.M., Bednarski, B., Stack, C., Cowan, D.W., Volmar, K., Thorne, L., Cukierman, E., Rustgi, A.K., Brentnall, T., Hwang, R.F., et al. (2010). Isoform-specific upregulation of palladin in human and murine pancreas tumors. PLoS ONE 5(4): e10347 5, e10347.
Haupenthal, J., Baehr, C., Kiermayer, S., Zeuzem, S., and Piiper, A. (2006). Inhibition of RNAse A family enzymes prevents degradation and loss of silencing activity of siRNAs in serum. Biochemical Pharmacology 75, 702-710.
Hayashi, Y.K., Chou, F.-L., Engvall, E., Ogawa, M., Matsuda, C., Hirabayashi, S., Yokochi, K., Ziober, B.L., Kramer, R.H., Kaufman, S.J., et al. (1998). Mutations in the integrin alpha7 gene cause congenital myopathy. Nature Genetics 19, 97-97.
Herrmann, H., Hesse, M., Reichenzeller, M., Aebi, U., and Magin, T.M. (2003). Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. International Review of Cytology 223, 83-175.
Herrmann, H., Strelkov, S.V., Burkhard, P., and Aebi, U. (2009). Intermediate filaments: primary determinants of cell architecture and plasticity. The Journal of Clinical Investigation 199, 1772-1783.
Hoerter, J.A.H., and Walter, N.G. (2007). Chemical modification resolves the asymmetry of siRNA strand degradation in human blood serum. RNA 13, 1887-1893. 36
Hotulainen, P., and Lappalainen, P. (2006). Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. The Journal of Cell Biology 173, 383-394.
Jin, L., Gan, Q., Zieba, B.J., Goicoechea, S.M., Owens, G.K., Otey, C.A., and Somlyo, A.V. (2010). The actin associated protein palladin is important for the early smooth muscle cell differentiation. PLoS One 22(9), e12823.
Jin, L., Hastings, N.E., Blackman, B.R., and Somlyo, A.V. (2009). Mechanical properties of the extracellular matrix alter expression of smooth muscle protein LPP and its partner palladin; relationship to early atherosclerosis and vascular injury. Journal of Muscle Research and Cell Motility 30, 41-55.
Joshi, H.C., Palacios, M.J., McNamara, L., and Cleveland, D.W. (1992). γ-Tubulin is a centrosomal protein required for cell cycle-dependent microtubule nucleation. Nature 359, 80-83.
Khaitlina, S. (2001). Functional specificity of actin isoforms. Int Rev Cytol 202, 35-98.
Kim, S., and Coulombe, P.A. (2007). Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes & Development 21, 1581-1597.
Krause, M., Dent, E.W., Bear, J.E., Loureiro, J.J., and Gertler, F.B. (2003). Ena/VASP proteins: regulators of the actin cytoskeleton and cell migration. Annual Review of Cell and Developmental Biology 19, 541-564.
Lalowski, M., Salmikangas, P., Suila, H., and Carpén, O. (2001). Characterization of human palladin, a microfilament-associated protein. Molecular Biology of the Cell 12, 3060-3073.
Lai, C.-F., Bai, S., Uthgenannt, B.A., Halstead, L.R., McLoughlin, P., Schafer, B.W., Chu, P.-H., Chen, J., Otey, C.A., Cao, X., et al. (2006). Four and Half Lim Protein 2 (FHL2) Stimulates Osteoblast Differentiation. Journal of Bone and Mineral Research 21, 17-28.
Lavedana, C., Buchholtza, S., Nussbaumb, R.L., Albinc, R.L., and Polymeropoulos, M.H. (2002). A mutation in the human neurofilament M gene in Parkinson's disease that suggests a role for the cytoskeleton in neuronal degeneration. Neuroscience Letters 322, 57-61.
Liu, X.-S., Luo, H.-J., Yang, H., Wang, L., Kong, H., Jin, Y.-E., Wang, F., Gu, M.-M., Chen, Z., Lu, Z.-Y., et al. (2007). Palladin regulates cell and extracellular matrix interaction through maintaining normal actin cytoskeleton architecture and stabilizing Beta1-integrin. Journal of Cellular Biochemistry 100, 1288-1300.
Liu, J., Burkin, D.J., and Kaufman, S.J. (2008). Increasing α7β1-integrin promotes muscle cell proliferation, adhesion, and resistance to apoptosis without changing gene expression. American Journal of Physiology - Cell Physiology 294, C627-640.
Liu, X.-S., Luo, H.-J., Yang, H., Wang, L., Kong, H., Jin, Y.-E., Wang, F., Gu, M.-M., Chen, Z., Lu, Z.-Y., et al. (2007). Palladin regulates cell and extracellular matrix interaction through maintaining normal actin cytoskeleton architecture and stabilizing Beta1-integrin. Journal of Cellular Biochemistry 100, 1288-1300.
Luo, H., Liu, X., Wang, F., Huang, Q., Shen, S., Wangb, L., Xu, G., Sun, X., Kong, H., Gu, M., et al. (2005). Disruption of palladin results in neural tube closure defects in mice. Molecular and Cellular Neuroscience 29, 507-515.
Luo, H., Liu, X., Wang, F., Huang, Q., Shen, S., Wangb, L., Xu, G., Sun, X., Kong, H., Gu, M., et al. (2005). Disruption of palladin results in neural tube closure defects in mice. Molecular and Cellular Neuroscience 29, 507-515.
Ma, K., and Wang, K. (2002). Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. FEBS Letters 532, 273-278.
Molognia, L., Mozaa, M., Lalowskia, M.M., and Carpénb, O. (2005). Characterization of mouse myotilin and its promoter. Biochemical and Biophysical Research Communications 329, 1001-1009.
Otey, C.A., Rachlin, A., Moza†, M., Arneman, D., and Carpen, O. (2005). The palladin/myotilin/myopalladin family of actin-associated scaffolds. International Review of Cytology 246, 31-58.
Parast, M.M., and Otey, C.A. (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. The Journal of cell biology 150, 643-656.
Pogue-Geile, K.L., Chen, R., Bronner, M.P., Crnogorac-Jurcevic, T., Moyes, K.W., Dowen, S., Otey, C.A., Crispin, D.A., George, R.D., Whitcomb, D.C., et al. (2006). Palladin mutation causes familial pancreatic cancer and suggests a new cancer mechanism. PLoS medicine 3, e516.
Qian, X.-j., Mruk, D.D., Cheng, Y.-h., and Cheng, C.Y. (2013). Actin cross-linking protein palladin and spermatogenesis. Spermatogenesis 3, 0-6.
Rönty, M.J., Leivonen, S.-K., Hinz, B., Rachlin, A., Otey, C.A., Kähäri, V.-M., and Carpén, O.M. (2006). Isoform-specific regulation of the actin-organizing protein palladin during TGF-β1-induced myofibroblast differentiation. Journal of Investigative Dermatology 126, 2387-2396.
Rachlin, A.S., and Otey, C.A. (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. Journal of cell science 119.
Salmikangas, P., Mykkänen, O.-M., Grönholm, M., Heiska, L., Kere, J., and Carpén, O. (1999). Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Human Molecular Genetics 8, 1329-1336.
Salmikangas, P., Ven, P.F.M.v.d., Lalowski, M., Taivainen, A., Zhao, F., Suila, H., Schröder, R., Lappalainen, P., Fürst, D.O., and Carpén, O. (2003). Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Human Molecular Genetics 12, 189-203.
Sbrana, F., Sassoli, C., Meacci, E., Nosi, D., Squecco, R., Paternostro, F., Tiribilli, B., Zecchi-Orlandini, S., Francini, F., and Formigli, L. (2008). Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts. American Journal of Physiology - Cell Physiology 295, C160-C172.
Sheetz, M.P. (2001). Cell control by membrane–cytoskeleton adhesion. Nature Reviews Molecular Cell Biology 2, 392-396.
Slater, E., Amrillaeva, V., Fendrich, V., Bartsch, D., Earl, J., Vitone, L.J., Neoptolemos, J.P., and Greenhalf, W. (2007). Palladin mutation causes familial pancreatic cancer: absence in European families. PLoS Medicine 4, e164.
Parast, M.M., and Otey, C.A. (2000). Characterization of palladin, a novel protein localized to stress fibers and cell adhesions. The Journal of cell biology 150, 643-656.
Rachlin, A.S., and Otey, C.A. (2006). Identification of palladin isoforms and characterization of an isoform-specific interaction between Lasp-1 and palladin. Journal of cell science 119.
Taverna, D., Disatnik, M.-H., Rayburn, H., Bronson, R.T., Yang, J., Rando, T.A., and Hynes, R.O. (1998). Dystrophic muscle in mice chimeric for expression of α5 Integrin. The Journal of Cell Biology 143, 849-859.
Tay, P.N., Tan, P., Lan, Y., Leung, C.H.-W., Laban, M., Tan, T.C., Ni, H., Manikandan, J., Rashid, S.B.A., Yan, B., et al. (2010). Palladin, an actin-associated protein, is required for adherens junction formation and intercellular adhesion in HCT116 colorectal cancer cells. International journal of oncology 37, 909-926.
Tsutsumi, T., Arima, H., Hirayama, F., and Uekama, K. (2007). Potential use of dendrimer/α-cyclodextrin conjugate as a novel carrier for small interfering RNA (siRNA). Journal of Controlled Release 119, 349-359.
Wang, H.-V., and Moser, M. (2008). Comparative expression analysis of the murine palladin isoforms. Developmental Dynamics 237, 3342-3351.
Zhang, J., Herrera, A.M., Peter D. Paré, and Seow, C.Y. (2010). Dense-body aggregates as plastic structures supporting tension in smooth muscle cells. American Journal of Physiology - Lung Cellular and Molecular Physiology 229, L631-L638.
校內:2023-08-19公開