| 研究生: |
洪婷婷 Hung, Ting-Ting |
|---|---|
| 論文名稱: |
定位大鼠第四型雙肽蛋白水解酶其細胞外區域中之纖連蛋白及單株抗體6A3的結合位點 Localization of Fibronectin and Monoclonal Antibody 6A3 Binding Sites in the Extracellular Domain of Rat Dipeptidyl Peptidase IV |
| 指導教授: |
鄭宏祺
Cheng, Hung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 癌症轉移 、纖連蛋白 、第四型雙肽蛋白水解酶 |
| 外文關鍵詞: | DPP IV, CD26, Fibronectin, metastasis |
| 相關次數: | 點閱:95 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌細胞與內皮細胞間之特異性的黏著決定臟器特異性之轉移。在大鼠乳癌細胞模式中,我們先前已顯示癌細胞表面附著之纖連蛋白(FN)之聚合體(poly-FN)藉著與內皮細胞表面表達第四型雙胜肽蛋白水解酶(DPP IV)來媒介肺臟血管中癌細胞的捕捉與隨後之轉移。因此,阻斷DPPIV/FN之細胞黏著,則在肺臟的癌症轉移降低是可以被期待的。基於此理由,我們決定定位在DPP IV蛋白中的FN結合位點[FBS(s)],此位點將有助研發抗細胞黏著之胜肽。並且已知抗大鼠DPP IV的小鼠單株抗體6A3可抑制DPP IV/FN的細胞黏著;然而6A3卻可以免疫沉澱下已經連結的DPP IV/FN聚合物。意味著,6A3在DPP IV蛋白上的結合位點(6BS)和FBS(s)是不一樣的,所以辨認兩者的結合位點將有助於了解DPP IV和FN與6A3之間複雜的結合與抑制的相互關係。為此,我們在大腸桿菌蛋白質表達系統中,表達並純化出帶有麥芽糖結合蛋白之不同的DPP IV片段。為了要找DPP IV 蛋白中的FBS(s),我們利用結合上poly-FN的明膠微珠,成功地抓下全長的DPP IV,所以,此實驗方法是適合用來偵測DPP IV 蛋白中的FBS(s)。我們發現到FBS(s)是位在DPP IV蛋白中的A片段(第二十九個胺基酸天冬醯酸至第一百三十個胺基酸酪胺酸),接下來縮小A片段中FBS(s)的範圍到五十六個胺基酸之中,再利用易出錯的鏈鎖酶聚合反應的技術隨機產生突變,更進一步分析此範圍中和FN結合的特性。不同於FBS(s),我們發現到6BS是位在DPP IV蛋白中的B片段(第一百三十一個胺基酸絲胺酸至第五百零二個胺基酸天門冬胺酸),更加確定此兩個結合的位點是位於DPP IV蛋白中的不同位置。因為6A3只能和大鼠的DPP IV結合,人或小鼠的序列卻不能,所以我們比對這三種不同物種的DPP IV序列,並且利用定點突變技術找到6A3的抗原表位。在成功辨認這兩個位點之後,我們利用建構具有FBS(s)或6BS突變的DPP IV片段,若此獨立性屬實,則FBS(s)突變的片段不會影響與6A3結合;反之,6B3突變的片段不會影響與FN的結合,最終證明兩個結合位點是彼此是互相獨立的關係。
Specific adhesions between cancer cells and endothelial cells contribute to organ-preference of metastases. In a rat breast cancer model, we previously demonstrated cell surface-associated polymeric fibronectin (poly-FN) mediated lung vascular arrest of cancer cells and hereat lung metastasis by binding to endothelial Dipeptidyl peptidase IV (DPP IV). This metastasis is expected to be reduced if DPP IV/FN-mediated adhesion can be blocked. For that purpose, we determined to locate the fibronectin (FN)-binding site(s) [FBS(s)] in DPP IV molecule, from which an adhesion-inhibitory peptide can be yielded. Moreover, the adhesion between FN and DPP IV was inhibited by a mouse monoclonal antibody (mAb) against rat DPP IV, 6A3. 6A3 could, however, immunoprecipitate the already formed DPP IV/FN complex, suggesting that the FN- and 6A3-binding sites(6BS) may differentially exist in DPP IV. Therefore, the identification of both binding sites may help elucidate the complicated binding as well as inhibitory relationship among 6A3, FN, and DPP IV. We expressed various DPP IV fragments in E. coli expression system as Maltose-binding protein (MBP)-fusion protein. To measure the binding between FN and DPP IV fragments, we prepared polyFN-conjugated gelatin-agarose beads, and showed they were able to pull-down the full-length DPP IV, thus suitable for detecting binding between FN and DPP IV fragments. We found the FN-binding sites are localized on DPP IV fragment A (Asn29-Tyr130). We then narrowed down the range of FN-binding sites to within 56 amino acids. A mutagenesis strategy - error-prone PCR technique - was used to further characterize FN-binding activities. In contrast to FBS(s), the 6A3-binding epitope has been shortened to be in the DPP IV fragment B (Ser131-Asp502), confirming that both binding-sites are indeed to separate regions on DPP IV. Since 6A3 only binds to rat DPP IV, but not that of human and mouse, we aligned and compared DPP IV sequences of the three species and then employed the site-directed mutagenesis technique to generate the proposed epitopes. Upon final identification of both binding sites, we were proved the independency of both binding sites on either binding activities by constructing fragment A+B with either mutated FBS(s) or 6BS that we anticipate not to interfere 6A3-binding or FN-binding, respectively.
1. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7):927-939.
2. Steeg PS. Metastasis suppressors alter the signal transduction of cancer cells. Nature reviews. 2003;3(1):55-63.
3. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nature medicine. 2006;12(8):895-904.
4. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127(4):679-695.
5. Villhauer EB, Brinkman JA, Naderi GB, Dunning BE, Mangold BL, Mone MD, Russell ME, Weldon SC, Hughes TE. 1-[2-[(5-Cyanopyridin-2-yl)amino]ethylamino]acetyl-2-(S)-pyrrolidinecarbon itrile: a potent, selective, and orally bioavailable dipeptidyl peptidase IV inhibitor with antihyperglycemic properties. Journal of medicinal chemistry. 2002;45(12):2362-2365.
6. McCawley LJ, Matrisian LM. Matrix metalloproteinases: multifunctional contributors to tumor progression. Molecular medicine today. 2000;6(4):149-156.
7. Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C. Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. The International journal of developmental biology. 2004;48(5-6):411-424.
8. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nature reviews. 2002;2(6):442-454.
9. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nature reviews. 2002;2(8):563-572.
10. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nature reviews. 2003;3(6):453-458.
11. Nguyen DX, Massague J. Genetic determinants of cancer metastasis. Nat Rev Genet. 2007;8(5):341-352.
12. Kinsey DL. An experimental study of preferential metastasis. Cancer. 1960;13:674-676.
13. Kieran MW, Longenecker BM. Organ specific metastasis with special reference to avian systems. Cancer metastasis reviews. 1983;2(2):165-182.
14. Pauli BU, Lee CL. Organ preference of metastasis. The role of organ-specifically modulated endothelial cells. Laboratory investigation; a journal of technical methods and pathology. 1988;58(4):379-387.
15. Nicolson GL. Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. Biochimica et biophysica acta. 1988;948(2):175-224.
16. Auerbach R, Lu WC, Pardon E, Gumkowski F, Kaminska G, Kaminski M. Specificity of adhesion between murine tumor cells and capillary endothelium: an in vitro correlate of preferential metastasis in vivo. Cancer research. 1987;47(6):1492-1496.
17. Pauli BU, Augustin-Voss HG, el-Sabban ME, Johnson RC, Hammer DA. Organ-preference of metastasis. The role of endothelial cell adhesion molecules. Cancer metastasis reviews. 1990;9(3):175-189.
18. Fidler IJ, Hart IR. Biological diversity in metastatic neoplasms: origins and implications. Science (New York, N.Y. 1982;217(4564):998-1003.
19. Pasqualini R, Ruoslahti E. Organ targeting in vivo using phage display peptide libraries. Nature. 1996;380(6572):364-366.
20. Johnson RC, Augustin-Voss HG, Zhu DZ, Pauli BU. Endothelial cell membrane vesicles in the study of organ preference of metastasis. Cancer research. 1991;51(1):394-399.
21. Cheng HC, Abdel-Ghany M, Elble RC, Pauli BU. Lung endothelial dipeptidyl peptidase IV promotes adhesion and metastasis of rat breast cancer cells via tumor cell surface-associated fibronectin. The Journal of biological chemistry. 1998;273(37):24207-24215.
22. Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU. The breast cancer beta 4 integrin and endothelial human CLCA2 mediate lung metastasis. The Journal of biological chemistry. 2001;276(27):25438-25446.
23. Felding-Habermann B, O'Toole TE, Smith JW, Fransvea E, Ruggeri ZM, Ginsberg MH, Hughes PE, Pampori N, Shattil SJ, Saven A, Mueller BM. Integrin activation controls metastasis in human breast cancer. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(4):1853-1858.
24. Wang H, Fu W, Im JH, Zhou Z, Santoro SA, Iyer V, DiPersio CM, Yu QC, Quaranta V, Al-Mehdi A, Muschel RJ. Tumor cell alpha3beta1 integrin and vascular laminin-5 mediate pulmonary arrest and metastasis. The Journal of cell biology. 2004;164(6):935-941.
25. Brown DM, Ruoslahti E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer cell. 2004;5(4):365-374.
26. Johnson RC, Zhu D, Augustin-Voss HG, Pauli BU. Lung endothelial dipeptidyl peptidase IV is an adhesion molecule for lung-metastatic rat breast and prostate carcinoma cells. The Journal of cell biology. 1993;121(6):1423-1432.
27. Piazza GA, Callanan HM, Mowery J, Hixson DC. Evidence for a role of dipeptidyl peptidase IV in fibronectin-mediated interactions of hepatocytes with extracellular matrix. The Biochemical journal. 1989;262(1):327-334.
28. Korach S, Poupon MF, Du Villard JA, Becker M. Differential adhesiveness of rhabdomyosarcoma-derived cloned metastatic cell lines to vascular endothelial monolayers. Cancer research. 1986;46(7):3624-3629.
29. Rasmussen HB, Branner S, Wiberg FC, Wagtmann N. Crystal structure of human dipeptidyl peptidase IV/CD26 in complex with a substrate analog. Nature structural biology. 2003;10(1):19-25.
30. Thoma R, Loffler B, Stihle M, Huber W, Ruf A, Hennig M. Structural basis of proline-specific exopeptidase activity as observed in human dipeptidyl peptidase-IV. Structure. 2003;11(8):947-959.
31. Hartel S, Gossrau R, Hanski C, Reutter W. Dipeptidyl peptidase (DPP) IV in rat organs. Comparison of immunohistochemistry and activity histochemistry. Histochemistry. 1988;89(2):151-161.
32. McCaughan GW, Wickson JE, Creswick PF, Gorrell MD. Identification of the bile canalicular cell surface molecule GP110 as the ectopeptidase dipeptidyl peptidase IV: an analysis by tissue distribution, purification and N-terminal amino acid sequence. Hepatology (Baltimore, Md. 1990;11(4):534-544.
33. Buhling F, Kunz D, Reinhold D, Ulmer AJ, Ernst M, Flad HD, Ansorge S. Expression and functional role of dipeptidyl peptidase IV (CD26) on human natural killer cells. Natural immunity. 1994;13(5):270-279.
34. Iwaki-Egawa S, Watanabe Y, Kikuya Y, Fujimoto Y. Dipeptidyl peptidase IV from human serum: purification, characterization, and N-terminal amino acid sequence. Journal of biochemistry. 1998;124(2):428-433.
35. Cunningham DF, O'Connor B. Proline specific peptidases. Biochimica et biophysica acta. 1997;1343(2):160-186.
36. Hopsu-Havu VK, Glenner GG. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie. Histochemistry. 1966;7(3):197-201.
37. Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scandinavian journal of immunology. 2001;54(3):249-264.
38. Fulop V, Bocskei Z, Polgar L. Prolyl oligopeptidase: an unusual beta-propeller domain regulates proteolysis. Cell. 1998;94(2):161-170.
39. Engel M, Hoffmann T, Wagner L, Wermann M, Heiser U, Kiefersauer R, Huber R, Bode W, Demuth HU, Brandstetter H. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(9):5063-5068.
40. Lambeir AM, Diaz Pereira JF, Chacon P, Vermeulen G, Heremans K, Devreese B, Van Beeumen J, De Meester I, Scharpe S. A prediction of DPP IV/CD26 domain structure from a physico-chemical investigation of dipeptidyl peptidase IV (CD26) from human seminal plasma. Biochimica et biophysica acta. 1997;1340(2):215-226.
41. Lambeir AM, Proost P, Durinx C, Bal G, Senten K, Augustyns K, Scharpe S, Van Damme J, De Meester I. Kinetic investigation of chemokine truncation by CD26/dipeptidyl peptidase IV reveals a striking selectivity within the chemokine family. The Journal of biological chemistry. 2001;276(32):29839-29845.
42. Proost P, Menten P, Struyf S, Schutyser E, De Meester I, Van Damme J. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78beta into a most efficient monocyte attractant and CCR1 agonist. Blood. 2000;96(5):1674-1680.
43. Strieter RM, Belperio JA, Keane MP. Cytokines in innate host defense in the lung. The Journal of clinical investigation. 2002;109(6):699-705.
44. Marguet D, Baggio L, Kobayashi T, Bernard AM, Pierres M, Nielsen PF, Ribel U, Watanabe T, Drucker DJ, Wagtmann N. Enhanced insulin secretion and improved glucose tolerance in mice lacking CD26. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(12):6874-6879.
45. Kuhn-Wache K, Manhart S, Hoffmann T, Hinke SA, Gelling R, Pederson RA, McIntosh CH, Demuth HU. Analogs of glucose-dependent insulinotropic polypeptide with increased dipeptidyl peptidase IV resistance. Advances in experimental medicine and biology. 2000;477:187-195.
46. Gorrell MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond). 2005;108(4):277-292.
47. Morimoto C, Schlossman SF. The structure and function of CD26 in the T-cell immune response. Immunological reviews. 1998;161:55-70.
48. Ishii T, Ohnuma K, Murakami A, Takasawa N, Kobayashi S, Dang NH, Schlossman SF, Morimoto C. CD26-mediated signaling for T cell activation occurs in lipid rafts through its association with CD45RO. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(21):12138-12143.
49. Torimoto Y, Dang NH, Vivier E, Tanaka T, Schlossman SF, Morimoto C. Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J Immunol. 1991;147(8):2514-2517.
50. Franco R, Valenzuela A, Lluis C, Blanco J. Enzymatic and extraenzymatic role of ecto-adenosine deaminase in lymphocytes. Immunological reviews. 1998;161:27-42.
51. Gorrell MD, Abbott CA, Kahne T, Levy MT, Church WB, McCaughan GW. Relating structure to function in the beta-propeller domain of dipeptidyl peptidase IV. Point mutations that influence adenosine deaminase binding, antibody binding and enzyme activity. Advances in experimental medicine and biology. 2000;477:89-95.
52. Gines S, Marino M, Mallol J, Canela EI, Morimoto C, Callebaut C, Hovanessian A, Casado V, Lluis C, Franco R. Regulation of epithelial and lymphocyte cell adhesion by adenosine deaminase-CD26 interaction. The Biochemical journal. 2002;361(Pt 2):203-209.
53. Bauvois B. A collagen-binding glycoprotein on the surface of mouse fibroblasts is identified as dipeptidyl peptidase IV. The Biochemical journal. 1988;252(3):723-731.
54. Cheng HC, Abdel-Ghany M, Pauli BU. A novel consensus motif in fibronectin mediates dipeptidyl peptidase IV adhesion and metastasis. The Journal of biological chemistry. 2003;278(27):24600-24607.
55. Abdel-Ghany M, Cheng H, Levine RA, Pauli BU. Truncated dipeptidyl peptidase IV is a potent anti-adhesion and anti-metastasis peptide for rat breast cancer cells. Invasion & metastasis. 1998;18(1):35-43.
56. Cheng HC, Abdel-Ghany M, Zhang S, Pauli BU. Is the Fischer 344/CRJ rat a protein-knock-out model for dipeptidyl peptidase IV-mediated lung metastasis of breast cancer? Clinical & experimental metastasis. 1999;17(7):609-615.
57. Kikkawa F, Kajiyama H, Ino K, Shibata K, Mizutani S. Increased adhesion potency of ovarian carcinoma cells to mesothelial cells by overexpression of dipeptidyl peptidase IV. International journal of cancer. 2003;105(6):779-783.
58. Kajiyama H, Kikkawa F, Suzuki T, Shibata K, Ino K, Mizutani S. Prolonged survival and decreased invasive activity attributable to dipeptidyl peptidase IV overexpression in ovarian carcinoma. Cancer research. 2002;62(10):2753-2757.
59. Wesley UV, Albino AP, Tiwari S, Houghton AN. A role for dipeptidyl peptidase IV in suppressing the malignant phenotype of melanocytic cells. The Journal of experimental medicine. 1999;190(3):311-322.
60. Ruoslahti E. Fibronectin and its receptors. Annual review of biochemistry. 1988;57:375-413.
61. Romberger DJ. Fibronectin. The international journal of biochemistry & cell biology. 1997;29(7):939-943.
62. Potts JR, Campbell ID. Structure and function of fibronectin modules. Matrix Biol. 1996;15(5):313-320; discussion 321.
63. Abe Y, Bui-Thanh NA, Ballantyne CM, Burns AR. Extra domain A and type III connecting segment of fibronectin in assembly and cleavage. Biochemical and biophysical research communications. 2005;338(3):1640-1647.
64. McDonald JA, Broekelmann TJ, Kelley DG, Villiger B. Gelatin-binding domain-specific anti-human plasma fibronectin Fab' inhibits fibronectin-mediated gelatin binding but not cell spreading. The Journal of biological chemistry. 1981;256(11):5583-5587.
65. Barkalow FJ, Schwarzbauer JE. Localization of the major heparin-binding site in fibronectin. The Journal of biological chemistry. 1991;266(12):7812-7818.
66. ffrench-Constant C. Alternative splicing of fibronectin--many different proteins but few different functions. Experimental cell research. 1995;221(2):261-271.
67. Manabe R, Ohe N, Maeda T, Fukuda T, Sekiguchi K. Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. The Journal of cell biology. 1997;139(1):295-307.
68. Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. The EMBO journal. 1999;18(6):1468-1479.
69. Han S, Khuri FR, Roman J. Fibronectin stimulates non-small cell lung carcinoma cell growth through activation of Akt/mammalian target of rapamycin/S6 kinase and inactivation of LKB1/AMP-activated protein kinase signal pathways. Cancer research. 2006;66(1):315-323.
70. Wernert N. The multiple roles of tumour stroma. Virchows Arch. 1997;430(6):433-443.
71. Pupa SM, Menard S, Forti S, Tagliabue E. New insights into the role of extracellular matrix during tumor onset and progression. Journal of cellular physiology. 2002;192(3):259-267.
72. Clark EA, Golub TR, Lander ES, Hynes RO. Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 2000;406(6795):532-535.
73. Kaspar M, Zardi L, Neri D. Fibronectin as target for tumor therapy. International journal of cancer. 2006;118(6):1331-1339.
74. Ajami K, Abbott CA, Obradovic M, Gysbers V, Kahne T, McCaughan GW, Gorrell MD. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Biochemistry. 2003;42(3):694-701.
75. Ludwig K, Yan S, Fan H, Reutter W, Bottcher C. The 3D structure of rat DPPIV/CD26 as obtained by cryo-TEM and single particle analysis. Biochemical and biophysical research communications. 2003;304(1):73-77.
76. Sachdev D, Chirgwin JM. Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein expression and purification. 1998;12(1):122-132.
77. Aertgeerts K, Ye S, Shi L, Prasad SG, Witmer D, Chi E, Sang BC, Wijnands RA, Webb DR, Swanson RV. N-linked glycosylation of dipeptidyl peptidase IV (CD26): effects on enzyme activity, homodimer formation, and adenosine deaminase binding. Protein Sci. 2004;13(1):145-154.
78. Hormann H, Richter H. Models for the subunit arrangement in soluble and aggregated plasma fibronectin. Biopolymers. 1986;25(5):947-958.
79. Wu C, Bauer JS, Juliano RL, McDonald JA. The alpha 5 beta 1 integrin fibronectin receptor, but not the alpha 5 cytoplasmic domain, functions in an early and essential step in fibronectin matrix assembly. The Journal of biological chemistry. 1993;268(29):21883-21888.
80. Langenbach KJ, Sottile J. Identification of protein-disulfide isomerase activity in fibronectin. The Journal of biological chemistry. 1999;274(11):7032-7038.
81. Ruoslahti E, Rajotte D. An address system in the vasculature of normal tissues and tumors. Annual review of immunology. 2000;18:813-827.
82. Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. The New England journal of medicine. 2001;344(11):783-792.
83. Barlesi F, Tchouhadjian C, Doddoli C, Villani P, Greillier L, Kleisbauer JP, Thomas P, Astoul P. Gefitinib (ZD1839, Iressa) in non-small-cell lung cancer: a review of clinical trials from a daily practice perspective. Fundamental & clinical pharmacology. 2005;19(3):385-393.