| 研究生: |
李威翰 Li, Wei-Han |
|---|---|
| 論文名稱: |
火花電漿燒結製備含釔之鈦酸鍶陶瓷及其熱電性質之研究 Spark plasma sintering of Y-doped SrTiO3 bulks for thermoelectric application |
| 指導教授: |
黃啟祥
Hwang, Chii-Shyang |
| 共同指導教授: |
吉村昌弘
Masahiro Yoshimura |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 熱電 、火花電漿燒結 、鈦酸鍶 |
| 外文關鍵詞: | thermoelectric, SPS, SrTiO3 |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱電材料在溫差發電及熱電致冷方面都具有廣泛的應用,而陶瓷的熱電材料具有無噪音、無污染等之優點,是深受期待的材料。SrTiO3 系陶瓷是中高溫區(400~1000 K) 熱電發電中最應被研發的熱電材料,其 ZT 值的研究主要集中在兩個方向:一是藉由增加材料內部的載子濃度(carrier concentration)來提高其功率因子 (electrical power factor, S2σ),二是增加材料內部的聲子 (phonon) 散射來降低其熱導係數,且不使電傳導係數下降太多。
為獲得次微米晶粒含釔之SrTiO3塊材,本研究以有機前導物法(Polymerized Complex method)製備含釔之SrTiO3陶瓷粉體,於 1050℃~1200℃及壓力30 MPa下進行火花電漿燒結 (SPS, spark plasma sintering)。燒結體塊材的熱電性質是以ZEM-3量測,粉體及燒結體的微結構是以 XRD、FE-SEM、EDS 等儀器分析,依此,了解釔含量及燒結溫度對於燒結體的顯微結構及熱電性質影響。
研究結果顯示,經925℃/4.5 h 鍛燒合成含釔之SrTiO3粉體,其粉末顆粒大小約為 100 nm; 經SPS 於1150及1200℃ 燒結5 min的塊材,其相對密度分別達96及 97 %。SPS 於1150及1200℃ 下燒結的塊材其破斷面經拋光熱腐蝕可看出晶粒大小分別為1 ~ 2μm及0.5μm。
在熱電性質方面,隨著釔含量及燒結溫度的增加,其電傳導係數有提升的趨勢,然而,Seebeck 係數則呈現相反之趨勢。最佳電傳導係數為1200℃ SPS 燒結所得含6 mol% 釔之試片,其量測溫度685 K時為70.83 S/cm,最大功率因子值則為 570 μw/mK2。SPS在1150℃燒結下所得含釔量0 mol% 之SrTiO3 燒結體具有最佳的Seebeck 係數於956 K溫區間可得 -435.10μV/K。
Thermoelectric materials and devices have widely used in the fields of energy conversion, sensors, and thermoelectric cooling. The ceramic thermoelectric materials are also well-known for no noise and no pollution. SrTiO3 is commonly used in the temperature range of 400-1000 K in thermoelectric materials systems. The research for figure-of-merit (ZT) has mainly focused on two main areas: (1) Improving the electrical power factor by increasing the material’s carrier concentration; (2) Lowering thermal conductivity by increasing the material’s ability to scatter phonons without causing a major decrease in electrical conductivity.
Preparing the sub-micron Y-doped SrTiO3 bulks, we use Polymerized Complex method to acquire Y-doped SrTiO3 powders. A series of powders were sintered by spark plasma sintering system (SPS). The microstructure of Y-doped SrTiO3 powders and bulks were analyzed by XRD、FE-SEM、EDS. Finally, our research investigates how the Y content and sintering temperature influence the SrTiO3 bulks’ microstructure and thermoelectric properties.
The findings show that the Particle size of Y-doped SrTiO3 powders calcined at 925℃/4.5 h is around 100 nm. The powders SPS at 1150℃ and 1200℃ for 5 min, can attain the relative densities of Y-doped SrTiO3 bulks for 96 % and 97% respectively. The polished thermal etched surface of Y-doped SrTiO3 specimen sintered by SPS at 1150℃ and 1200℃, which grain size are 1 ~ 2μm and 0.5μm.
In terms of thermoelectric properties, the electrical conductivity increases with the increasing Y content and sintering temperature. However, the Seebeck coefficient shows the opposite trend. The maximum electrical conductivity is the specimen of Y-doped SrTiO3 (6 mol%) SPS at 1200℃, which can attain 70.83 S/cm at 685 K. The maximum power factor is 570 μw/mK2, and the best Seebeck coefficient is the specimen of Y-doped SrTiO3 (0 mol%) SPS at 1150℃, which attains -435.10 μV/K at 956 K.
1. H. J. Goldsmid, D. M. Rowe, and B. Raton, in CRC Handbook of Thermoelectrics, Chap. 3-4 (1995).
2. H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, and K. Koumoto, “Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3”, Nature Mater., 6, 129 (2007).
3. T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, “Quantum Dot Superlattice Thermoelectric Materials and Devices”, Science, 297, 2220 (2002).
4. C. H. Kuo, M. S. Jeng, J. R. Ku, S. K. Wu, Y. W. Chou, and C. S. Hwang, J. Electron. Mater., DOI: 10.1007/s11664-009-0677-7, online (2009).
5. H. Ohta, “Thermoelectrics based on trontium titanate”, Mater. Today., 10, 10, (2007).
6. R. Moos, A. Gnudi, K.H. Hrdtl, “Thermoelectric properties of non-doped and Y-doped SrTiO3 polycrystals synthesized by polymerized complex process and hot pressing”, J. Appl. Phys., 78 5042–5047 (1995).
7. S. Hashimoto, L. Kinderman, F.W. Poulsen, M. Mogensen, “Conductivity of SrTiO3 based oxides in the reducing atmosphere at high temperature”, J. Alloys. Compd., 397 245–249 (2005).
8. H. Obara, A. Yamamoto, C.H. Lee, K. Kobayashi, A. Matsumoto, R. Funahashi, “Thermoelectric Properties of Y-Doped Polycrystalline SrTiO3”, Jpn. J. Appl. Phys., 43 L540–L542 (2004).
9. P.K. Gallagher, F. Schrey, F.V. Dimarcello, “Preparation of semiconducting titanates by chemical methods”, J. Am. Ceram., Soc. 46 (8) 359–365 (1963).
10. D. Chen, X. Jiao, M. Zhang, “Hydrothermal synthesis of strontium titanate powders with nanometer size derived from different precursors”, J. Eur. Ceram. Soc., 20 1261–1265 (2000).
11. Y. Mao, S. Banerjee, S. S. Wong, “Hydrothermal synthesis of perovskite nanotubes”, Chem. Commun., 408–409 (2003).
12. W. D. Yang, K. M. Hung, “Optimization of the experimental conditions for the preparation of a thin strontium titanate film by hydrothermal process”, J. Mater. Sci., 37 1337 – 1342 (2002).
13. S. Zhang, J. Liu, Y. Han, B. Chen, X. Li, Mater. Sci. “Formation mechanisms of SrTiO3 nanoparticles under hydrothermal conditions”, Mater. Sci. Eng. B, 110 11–17 (2004).
14. M. Kakihana, M. Yoshimura, H. Mazaki, H. Yasuoka, L. Borjesson, “Polymerized complex synthesis and intergranular coupling of Bi‐Pb‐Sr‐Ca‐Cu‐O superconductors characterized by complex magnetic susceptibility”, J. Appl. Phys., 71 3904–3910 (1992).
15. P. Duran, F. Capel, J. Tartaj, C. Moure, “Low-temperature fully dense and electrical properties of doped-ZnO varistors by a polymerized complex method”, J. Eur. Ceram. Soc., 22 67–77 (2002).
16. M. Ito, T. Nagira, D. Furumoto, S. Katsuyama, H. Nagai, “Synthesis of NaxCo2O4 thermoelectric oxides by the polymerized complex method”, Scripta Mater, 48 403–408 (2003).
17. Wang Xuewen, Zhang Zhiyong, Zhou Shuixian. “Preparation of nano-crystalline SrTiO3 powder in sol-gel process”, Mater. Sci. Eng. B, 86 29–33 (2001).
18. H. Xu, SQ. Wei, H Wang, MK. Zhu, R. Yu, H. Yan “Preparation of shape controlled SrTiO3 crystallites by sol-gel-hydrothermal method”, J. Cryst Growth., 292 159–164 (2006).
19. X. F. Sun, R. S. Guo, J. Li, “Preparation and properties of yttrium-doped SrTiO3 anode materials”, Ceram. Int, 34 219–223 (2008).
20. X. Li, H. Zhaoa, W. Shen, F. Gaoa, X. Huanga, Y. Li, Z. Zhub, “Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs”, J. Power. Sources., 166 47–52 (2007).
21. M. Ito, T. Matsuda, “Thermoelectric properties of non-doped and Y-doped SrTiO3 polycrystals synthesized by polymerized complex process and hot pressing”, J. Alloys. Compd., 477 473–477 (2009).
22. M. Nygren, “SPS Processing of Nano-Structured Ceramics”, Proceedines of Sino-Swedish Structural Materials Symposium (2007).
23. H. Obara, A. Yamamoto, C.H. Lee, K. Kobayashi, A. Matsumoto, R. Funahashi, “Thermoelectric properties of y-doped polycrystalline SrTiO3”, Jpn. J. Appl. Phys., 43 L540–L542 (2004).
24. T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura, “Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3”, Phys. Rev. B, 63 113104-1–113104-4 (2001).
25. S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto, “High-temperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals”, Appl. Phys. Lett., 87 092108-1–092108-3 (2005).
26. H. Muta, K. Kurosaki, S. Yamanaka. “Thermoelectric properties of reduced and La-doped single-crystalline SrTiO3”, J. Alloys Compd., 392 306–309 (2003).
27. L. Zhang, N. Okinaka, T. Tosho, “Thermoelectric Properties of Rare Earth-doped SrTiO3 by SPS”, T. Akiyama. online (2010).
28. S. B. Riffat, and X. Ma, “Thermo-electrics: A review of present and potential applications Applied Thermal Engineering”, 23, 913–935 (2003).
29. G. S. Nolas, and H. J. Goldsmid, “A comparison of projected thermoelectric and thermionic refrigerators”, J. Appl. Phys., 4066~4070 (1999).
30. L. G. Shcherbakova, L. G. Mamsurova, and G. E. Sukhanova Russ “Lanthanide Titanates”, Chem Rev, 48 (3) (1979).
31. J. P. Coutures, P. Odier, and C. Proust, “Barium titanate formation by orangic resins formed with mixed citrates”, J. Mater. Sci., 27 pp. 1849 -1856 (1992).
32. M. Kakihana, “Sol-gel preparation of high temperature superconducting oxides”, J. Sol-Gel Sci. Tech., 6 pp. 7-55 (1996).
33. S. Q. Hui, A. Petric, “Electrical properties of Yttrium-Doped Strontium Titanate under reducing conditions”, J. Electrochem. Soc., 149(1) J1-J10 (2002).
34. Q. X. Fu, S. B. Mi, E. Wessel, F. Tietz, J. Eu. “Influence of sintering conditions on microstructure and electrical conductivity of yttrium-substituted SrTiO3”, Ceram. Soc., 28, 811-820 (2008).
35. Y. Jiang, J. R. Smith, G. R. Odette. “Prediction of structural and electronic properties of Y-Ti-O complex oxides using AB-initio calculations”, online (2007).