| 研究生: |
楊佩榮 Yang, Pei-Rong |
|---|---|
| 論文名稱: |
ABAQUS分析天然壩滲流破壞 ABAQUS Investigation of Seepage-Induced Landslide-Dam Failure |
| 指導教授: |
洪瀞
Hung, Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | ABAQUS 、滲流破壞 、天然壩 、非飽和滲流 |
| 外文關鍵詞: | ABAQUS, seepage failure, landslide-dam, unsaturated seepage |
| 相關次數: | 點閱:108 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
堰塞湖天然壩在短時間內極有可能發生潰決,所以本研究採用有限元素法(ABAQUS)模擬非飽和天然壩之滲流-漸進式破壞,探討分析滲流-漸進式破壞過程中現象及原因。由模擬結果顯示產生滲流-漸進式破壞的原因是,隨著水位上升,孔隙水壓不斷增加,基質吸力下降導致有效應力的減少,從而使土壤的抗剪強度降低,造成下游坡面的不穩定,若土體因滲流力開始發生破壞,則會不斷往壩頂方向發展,最終導致壩頂高度下降,蓄水溢頂而造成潰決。
ABAQUS模擬之滲出點位、滲流角度及溢流侵蝕時位移趨勢與水工模型試驗進行比較,結果大致相符。由模擬可知,下游坡面滲流角度漸緩的區域流速及水力坡降最大,且滲流角度受下游坡度及渠道坡度影響,本文將滲流角度最小臨界值定義為λ=90°-θd+θt,可結合Budhu and Gobin(1996)的土體滲流破壞機制理論可準確判斷滲出點位、在滲流力作用是否使下游坡面產生破壞及水位變化導致不穩定坡面之範圍。
通過唐家山堰塞湖天然壩為案例進行模擬,結果顯示在水位為743.1m時滲出點位置位於高程681.33m,根據滲流角度判定在下游側高程為708.70m~719.36m的範圍極有可能會發生滲流破壞的情形。
There are wide acknowledgements that the landslide-dam is likely to crack down in a transitory time. Thus, this study uses finite element method (ABAQUS) to simulate the seepage-progressive failure of the unsaturated landslide-dam, by which the author could analyze the phenomenon and causes of such processes. The results of simulation demonstrate that the cause of seepage-progressive failure as follows: as the water level rises, the pore water pressure increases continuously so that the decreases in matric suction, which leads to the decreasing of effective stress and the reduction of shear strength of soil is resulting in instability of the downstream slope. If the soil begins to break down due to the seepage force, it will continue to develop toward the top of the dam, eventually leading to a drop in the height of the crest causing overtopping.
1. 伍恆志,「天然壩材料粒徑對壩體溢流破壞之影響」,國立成功大學水力及海洋工程研究所碩士論文,2012。
2. 張舒婷,「土壤水分特性曲線與不飽和水力傳導度之研究」,國立中興大學水土保持學系碩士論文,2007。
3. 臧運忠,「天然壩快速安全評估方法之研究」,國立成功大學水利及海洋工程研究所博士論文,2013。
4. 蘇暉凱,「暴雨誘發天然壩之重建數值模擬-太麻里溪堰塞湖為例」,國立交通大學土木工程學系碩士論文,2013。
5. 羅剛,「唐家山高速短程滑坡堵江及潰壩基質研究」,西南交通大學地質工程研究所博士論文,2012。
6. 高橋保、匡尙富,「天然ダムの決壊による土石流の規模に関する研究」,京都大學防災研究所年報,第31B-2期,第601-615頁,1988。
7. ABAQUS User’s Manual-Version 6.14, Dassault Systèmes Simulia Corp., Providence Corp., Providence, RI, USA, 2014.
8. Awal, R., Nakagawa, H., Baba, Y., Sharma, R.H., and Ito, N., “Study on landslide dam failure by sliding.” Annual Report of Disaster Prevention Research Institute, Kyoto University, No. 50(B), pp. 653-660, 2007.
9. Bear, J., “Dynamics of Fluids in Porous Media.” American Elsevier Publishing Company, Dover, New York, 1972.
10. Brooks, R. H., and Corey, T. A., “Hydraulic properties of porous media.” Hydrology Paper No. 3, Civil Engineering Department, Colorado State University, Fort Collins, CO., 1964.
11. Budhu, M., and Gobin, R., “Slope instability from ground-water seepage.” Journal of Hydraulic Engineering, ASCE, Vol. 122, No7, pp. 415-417, 1996.
12. Costa, J. E., and Schuster, R. L., “The formation and failure of natural dams.” Geological Society of America Bulletin, Vol. 100, pp. 1054-1068, 1988.
13. Fredlund, D. G., and Morgenstern, N. R., “Stress state variables for unsaturated soils.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, pp. 447-466, 1977.
14. Fredlund, D. G., and Rahardjo, H., “Soil mechanics for unsaturated soils.” John Wiley & Sons, Inc., New York, 1993.
15. Fredlund, D. G., and Xing, A., “Equations for the soil-water characteristic curve.” Canadian Geotechnical Journal, 31(4), pp. 521-532, 1994.
16. Hu, X. W., Luo, G., Lv, J. L., Hu, Y. Y., Liang, J. X., and Fang, L., “Seepage stability and dam-breaking mode of Tangjiashan barrier dam induced by the Wenchuan earthquake.” Engineering Geology for Society and Territory, Vol. 2, pp. 1155-1162, 2015.
17. Liu, N., Zhang, J. X., Lin, W., Cheng, W. Y., and Chen, Z. Y., “Draining Tangjiashan barrier lake after Wenchuan earthquake and the flood propagation after the dam break.” Science in China Series E: Technological Sciences, Vol. 52, pp. 801-809, 2009.
18. Lu, N., and Godt, J. W., “Hillslope hydrology and stability.” Cambridge University Press, Cambridge, UK, 2013.
19. Peng, M., and Zhang, L. M., “Breaching parameters of landslide dams.” Landslides vol.9, pp. 13-31, 2012.
20. Richards, L. A., “Capillary conduction of liquids through porous mediums.” Physics, Vol. 1, pp. 318-333, 1931.
21. Sillers, W. S., Fredlund, D. G., and Zakerzadeh, N., “Mathematical attributes of some soil-water characteristic curve models.” Geotechnical and Geological Engineering, Vol. 19, pp. 243-283, 2001.
22. Terzaghi, K., “Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungs erscheinungen.” Akademie der Wissenchaften in Wien, Sitzungsberichte, Mathematisch-naturwissenschaftliche Klasse, Part II a, Vol. 132, No. 3/4, pp. 125-138, 1923.
23. van Genuchten, M. T., “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Science Society of America Journal, Vol. 44, pp. 892-898, 1980.
24. Wang, W., Chen, G., Zheng, L., and Zhang, H., “Dynamic simulation of landslide dam behavior considering kinematic characteristics using a coupled DDA-SPH method.” Engineering Analysis with Boundary Elements, Vol. 80, pp. 172-183, 2017.
25. Xu, W. J., Xu, Q., and Wang, Y. J., “The mechanism of high-speed motion and damming of the Tangjiashan landslide.” Engineering Geology, Vol. 157, pp. 8-20, 2013.
26. Zhong, Q. M., Chen, S. S., Mei. S. A., and Cao, W., “Numerical simulation of landslide dam breaching due to overtopping.” Landslides, Vol. 15, pp1183-1192, 2017.
27. Zhou, J., Li, Y. X., Jia, M. C., and Li, C. N., “Numerical simulation of failure behavior of granular debris flows based on flume model tests.” The Scientific World Journal, article ID 603130, 2013.
校內:2023-06-30公開