| 研究生: |
莊維哲 Chuang, Wei-Che |
|---|---|
| 論文名稱: |
鋰離子電池濕法精煉與三元前驅物再製研究 Study of Hydrometallurgy of Li-ion Battery and Ternary Precursor Remanufacturing |
| 指導教授: |
陳引幹
Chen, In-Gann 徐邦昱 Hsu, Bang-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 循環經濟 、NCM 型 LIBs 、濕法冶金 、高純度 、三元前驅物 |
| 外文關鍵詞: | Circular Economy, NCM Lithium-ion batteries (LIBs), Hydrometallurgy, High Purity, Ternary Precursor |
| 相關次數: | 點閱:48 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自 1990 年代,日本索尼 (SONY)成功製造以鈷酸鋰為正極的二次鋰離子電池, 鋰離子電池 (Lithium – ion batteries, LIBs)便由於其優量的電池能量密度、較高的工作 電壓與較低的記憶效應,被廣泛運用至各種可攜式設備 (Portable electronic devices, PEDs),並主導市場至今。隨著循環經濟 (Circular economy)與都市採礦 (Urban mining)的概念興起,廢棄量逐年增長的廢鋰離子電池中,有價金屬 (Valuable metal) 如鋰、鎳、鈷、錳,電池內部之元素濃度遠高於自然界,Co 含量為 5 ~ 20 %;Ni 含 量為 5 ~ 10 %,煉得量將遠高於傳統採礦方式,為城市礦山。並且確保原料供應之 概念提倡,符合鋰離子電池原料分散與來源供應持續的回收需求,若能以廢棄鋰離 子電池作為二次金屬資源進行回收,除了解決自然界存在金屬含量不能提取大量金 屬的問題,也可確保產業之金屬物料供應源。基於上述目標,發展低能源消耗 (Low energy consumption)、高回收率 (High recycle rate)、高產品價值 (High economy)的回 收流程為實踐循環經濟與都市採礦的重要指標。 為達成高回收率、高產品價值之製程議題,本研究針對回收製程中,前處理火 法進行熱動力學評估,並改良傳統濕法高溶劑消耗提高製程鈷、鎳金屬回收率達 90 %以上,同時減少產品雜質 (Cu、Al)至符合電極再製標準最低達 0.01 wt%以下。 並通過共沉澱製程,將有價金屬萃取液再製得高產品品位三元前驅物,最終評估產 物批次產能,研究成果符合高回收效率、低能耗、高值化產品目標,也驗證本研究 研發新式廢鋰離子電池回收製程可行性。
Since the 1990s, Sony pioneered secondary lithium-ion batteries using lithium cobalt oxide as the positive electrode. These batteries, called lithium-ion batteries (LIBs), have become widespread in portable electronic devices (PEDs) due to their excellent energy density, operating voltage, and reduced memory effect. Meanwhile, the increasing disposal of batteries highlights an abundance of valuable metals, including lithium, nickel, cobalt, and manganese, with concentrations exceeding natural levels (5~ 20 % cobalt, 5~ 10 % nickel). Recycling potential exceeds traditional mining methods, establishing urban mining. Ensuring material supply aligns with decentralized, sustained LIBs material sourcing. Recycling spent LIBs as secondary metal resources ensures sustainable metal supplies. This study develops a recycling process with low energy consumption, high recycle rates, and enhanced product value, crucial for circular economy and urban mining. To boost recycling rates and product value, we assess pyrometallurgical pretreatment thermodynamics and improve hydrometallurgical methods, achieving over 90 % cobalt and nickel recovery while reducing impurities (Cu, Al) to < 0.01 wt%. A co-precipitation process reprocesses valuable metal extraction solutions to yield high-grade ternary precursor materials. Overall, our recycling process for spent LIBs, aligning with high recycling efficiency, low energy consumption, and high-value product goals.
1. SONY. (1990). 电池开发历程.
2. Armand, M., & Tarascon, J. M. (2008). Building better batteries. Nature, 451(7179), 652-657.
3. Etacheri, V., Marom, R., Elazari, R., Salitra, G., & Aurbach, D. (2011). Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4(9), 3243-3262.
4. Statista. (2023). Lithium-ion battery recycling market value worldwide from 2023 to 2024.
5. IDTechEx. (2023). Lithium-Ion Battery Recycling 2023-2041.
6. Xue, L., Li, J., Xu, W., Luo, D., Zhu, W., & Luo, Y. (2020). A review of lithium-ion battery recycling technologies. Sustainability, 12(5), 1924.
7. Cobalt Institute. (2019). "Cobalt: Demand-Supply Balance to Remain Tight."
8. International Nickel Study Group. (2022). "Nickel: Demand-Supply Balance to
Tighten."
9. Fastmarkets. (2021)."Lithium Carbonate: Market Outlook to 2025."
10. BloombergNEF. (2021). "Global Energy Storage Outlook 2021: Financing Storage to Drive the Energy Transition."
11. International Energy Agency. (2022). "Electric Vehicles Market Report 2022."
12. S. Pindar et al., Sustainable Mater. Technol., e00157 (2020).
13. H. Sun and A. Manthiram: Chem. Mater., 29 (2017), 8486-8493.
14. G. Harper et al., Nature., 575 (2019), 75–86.
15. B. Xu et al., Materials Science & Engineering R-Reports, 73 (2012), 51.
16. L. Li et al., J. Power Sources, 233 (2013), 180.
17. Q. Wei et al., Science of the Total Environment 866 (2023) 161380.
18. L. Li et al., Waste Manage., 85 (2019), 437.
19. S. Ko et al., ACS Materials Letters, 4 (2022), 831-839.
20. Q. Su et al., The Journal of Physical Chemistry C, 121 (2017), 6, 3295-3303.
21. P. Meshram et al., Hydrometallurgy, 150 (2014), 192-208.
22. W. Hu et al., Environ. Sci. Technol. (2022), 56, 10412−10422.
23. J. Liu et al., Miner. Eng., 148 (2020), Article 106223.
24. P. Ning et al., Waste Management, 103 (2020), pp. 52-60.
25. Q. Wei et al., Science of the Total Environment 866 (2023) 161380.
26. L.-P. He et al., Waste Management, 64 (2017) 171–181.
27. G. Dorella et al., J. Power Sources, 170 (1) (2007), pp. 210-215.
28. Y. Wang et al., Journal of Energy Storage 56 (2022) 106053.
29. 中華人民共和國有色金屬行業標準:YS / T 798 - 2012。
30. R. Zhang et al., ACS Sustainable Chemistry & Engineering, 8 (2020), 26, 9875-9884.
31. R. Zhang et al., ACS Applied Energy Materials, 4 (2021), 9, 10356-10367.
32. Y. Zheng et al., ACS Sustainable Chemistry & Engineering, 9 (2021), 17, 6087-6096.
33. Y. Zheng et al., ACS Applied Materials & Interfaces, 13 (2021), 48, 57171-57181.
34. Y. Koshika, ACS Applied Energy Materials, 5 (2022), 7, 8169-8177.
35. S. Refly et al., ACS Sustainable Chemistry & Engineering, 8 (2020), 43, 16104-16114.
36. H. Wang et al., J. Sustain. Metall. 1 (2015), 168–178.
37. L. Zheng et al., J. Electrochem. Soc., 167 (2020), 130536.
38. Int. J. Electrochem. Sci., 11 (2016), 5267 – 5278.
39. Y. Shen et al., ACS Applied Materials & Interfaces, 13 (2021), 1, 717-726.
40. A. Bommel and J. Dahn, Chemistry of Materials, 21 (2009), 8, 1500-1503.
41. T. Sato et al., BCSJ, 51 (1978), 8, 2310-2316.
42. S. Ghosh et al., Journal of Crystal Growth 487 (2018) 104–115.
43. T S Pacheco et al., Mater. Res. Express 6 (2019) 096302.
44. S. Ghosh et al., Optical Materials 85 (2018) 425–437.
45. M. Müller et al., ACS Applied Energy Materials, 4 (2021), 2, 1993-2003.
46. Z. Zheng et al., ACS Sustainable Chemistry & Engineering, 6 (2018), 11, 13977-13982.
47. Xu et al., Journal of Power Sources, 248 (2014), 180-189.
48. Z.-X. Xu et al., Journal of Analytical and Applied Pyrolysis 123 (2017) 402–408.
49. S. Vyazovkin et al., Thermochimica Acta 520 (2011) 1–19.
50. W. Liu et al., ACS Sustainable Chem. Eng. (2019), 7, 1289−1299.
51. ASTM-E1641-18. Standard Test Method For Decomposition Kinetics By Thermogravimetry Using The Ozawa/Flynn/Wall Method. (2018).
52. ASTM-E1877-21. Standard Practice For Calculating Thermal Endurance Of Materials From Thermogravimetric Decomposition Data. (2021).
53. 中華人民共和國化工行業標準: HG / T 3793-2005。
54. L. Chen et al., Bioresource Technology 323 (2021) 124584.
55. 吳豐聿碩士論文 (2021)。
56. Xiao et al., Journal of Environmental Sciences 20(2008) 907–914.
57. P. Barai et al., J. Phys. Chem. B (2019), 123, 3291−3303.
58. L.-F. Huang et al., J. Phys. Chem. C (2017), 121, 18, 9782–9789.
59. Z. Wang et al., npj Computational Materials (2020) 160.
60. O. V. Boytsova et al., Russian Journal of Inorganic Chemistry volume (2015) 60, pages 546–551.
61. ISSN 1404-0344.
62. T.J. O’Keeke, in Encyclopedia of Materials: Science and Technology, (2001).
63. Shanghai metals market, Nickel Sulfate (Battery Grade).
64. Shanghai metals market, Cobalt Sulfate (Battery Grade).
65. Shanghai metals market, Manganese Sulfate (Battery Level).
66. Shanghai metals market, Ternary precursor (Poly- crystal type).
校內:2029-01-12公開