簡易檢索 / 詳目顯示

研究生: 黃章展
Huang, Jhang-Jhan
論文名稱: 自動化雲製造服務佈建與視覺化檢測工具研發
Development of Automated Deployment Tools with Visualization Technology for Cloud Manufacturing Services
指導教授: 陳朝鈞
Chen, Chao-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 雲製造雲端運算網路服務自動化佈建網路服務檢測資料視覺化服務導向架構
外文關鍵詞: Cloud Manufacturing, Cloud Computing, Web Service, Automated Deployment, Web Service Verification, Data Visualization, Service-Oriented Architecture
相關次數: 點閱:164下載:21
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來製造產業面臨全球化競爭與商業市場挑戰,讓製造產業由傳統的製造生產模式逐漸轉變為具加值應用的製造服務模式。全球先進工業國家為克服商業市場變化帶來的巨大挑戰,各國政府與企業皆積極推動製造產業升級政策與重大轉型計畫,例如德國提出「工業4.0」計畫來提升製造產業的工業技術並邁向智慧化決策的製造生產型態。因此,製造系統(Manufacturing System)將透過資通訊科技導入虛擬化、智慧化以及自動化技術,並且運用雲端運算來整合分散式的製造資源以提供雲製造服務(Cloud Manufacturing Service)。然而建置雲製造服務可能面臨技術挑戰,包含(1)不易管理與維護規模化的雲端虛擬機器、(2)開發雲製造服務技術門檻高、(3)耗費時間佈建雲製造服務以及 (4)不易在分散式環境檢測雲製造服務的執行正確性。本論文設計與建構一個自動化雲製造服務佈建與視覺化檢測系統(Automated Cloud Manufacturing Service Deployment and Verification System),目標為提供自動化方式將製造資源佈建到分散式的雲端虛擬機器叢集,並結合視覺化技術來支援雲製造服務各項製造核心的功能檢測與維護資訊。本論文將透過先進駕駛輔助系統(Advanced Driver Assistance System, ADAS) 的引擎失火診斷系統(Engine Misfire Diagnostic System)作為案例研究,提供系統開發人員以腳本化方式描述雲製造服務流程,並且自動化建置引擎失火診斷雲製造服務於雲製造虛擬機器叢集。最後,經由系統整合與測試結果顯示,能驗證自動化佈建引擎失火診斷雲製造服務的有效性,以及視覺化雲製造服務核心功能檢測的正確性,可以確保引擎失火診斷雲製造服務在分散式雲端環境的執行可靠性。本論文的研究成果能提供建置雲製造服務的重要參考,特別是在製造產業,能邁向製造品質穩定化、生產模式彈性化與生產決策智慧化發展,達到有效改善產品良率、降低生產成本以及縮短產品上市時間,讓製造產業實現工業4.0核心願景來強化全球競爭力與保持既有領先地位。

    As the Industry 4.0 becomes a leading trend in the manufacturing industry, efficient development and automated deployment for constructing cloud manufacturing services turn into a critical issue. The research proposed in this thesis will design and construct an Automated Cloud Manufacturing Service Deployment and Verification System (called ACMSDVS), which aims to use automated approach to constructing cloud manufacturing services and deploy manufacturing resources to the cloud platform. Also providing visualization to test the core functions of cloud manufacturing services, it can effectively maintain the correctness of the cloud manufacturing services in a distributed cloud environment. The research implement a prototype of the ACMSDVS to verify the effectiveness through the case study of the engine misfire diagnosis system. Finally, the integrated testing results show that the ACMSDVS could deploy cloud manufacturing services in the cloud platform successfully.

    摘要 i 英文延伸摘要 ii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 研究問題 1.4 研究貢獻 5 1.5 論文架構 7 第二章 相關研究與技術探討 8 2.1 雲端運算 8 2.2 網路服務 8 2.3 雲製造 9 2.4 具自動伸縮能力的雲製造框架 10 第三章 系統架構設計 11 3.1 系統架構設計哲學 11 3.2 自動化雲製造服務佈建與視覺化檢測系統 13 第四章 系統核心機制與功能設計 18 4.1 雲製造虛擬機器叢集管理 18 4.1.1 虛擬機器註冊器 20 4.1.2 虛擬機器環境管理器 23 4.2 腳本化開發雲製造服務 28 4.2.1 製造服務腳本30 4.2.2 虛擬機器自動縮放規則腳本 31 4.2.3 單機程式腳本 32 4.3 自動化佈建雲製造服務 34 4.3.1 基於腳本的雲製造服務建構器 36 4.3.2 雲製造資源部署器 46 4.4 視覺化檢測雲製造服務 48 4.4.1 基於工作流程的製造服務整合測試器 50 4.4.2 雲製造服務測試結果顯示器 54 第五章 案例研究 57 5.1 案例研究背景57 5.2 自動化佈建引擎失火診斷雲製造服務 58 第六章 系統整合測試結果 61 6.1 系統整合測試的實驗環境 61 6.2 雲製造虛擬機器叢集管理整合測試 62 6.3 腳本化開發雲製造服務整合測試 64 6.4 自動化佈建雲製造服務整合測試 67 6.5 視覺化檢測雲製造服務整合測試 71 6.6 引擎失火診斷雲製造服務整合測試 75 第七章 結論 77 參考文獻 78

    [1] M. Wollschlaeger, T. Sauter, and J. Jasperneite, “The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0,” IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 17–27, 2017.
    [2] S. Seshia, S. Hu, W. Li, and Q. Zhu, “Design automation of cyber-physical systems: Challenges, advances, and opportunities,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 9, pp. 1421–1434, 2016.
    [3] D. Linthicum, “The technical case for mixing cloud computing and manufacturing,” IEEE Cloud Computing, vol. 3, no. 4, pp. 12–15, 2016.
    [4] F. Tao, Y. Zuo, L. Xu, and L. Zhang, “Iot-based intelligent perception and access of manufacturing resource toward cloud manufacturing,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1547–1557, 2014.
    [5] J. Siryani, B. Tanju, and T. Eveleigh, “A machine learning decision-support system improves the internet of things’ smart meter operations,” IEEE Internet of Things Journal, vol. 4, no. 4, pp. 1056–1066, 2017.
    [6] X. Xu and Q. Hua, “Industrial big data analysis in smart factory: Current status and research strategies,” IEEE Access, vol. PP, no. 99, pp. 1–1, 2017.
    [7] M. Taisch, B. Stahl, and G. Tavola, “Ict in manufacturing: Trends and challenges for 2020-an european view,” in Proceedings of the IEEE 10th International Conference on Industrial Informatics, 2012.
    [8] S. Tewari and M. Misra, “The impact of ict on manufacturing industry: An empirical analysis,” in Proceedings of the International Conference on Communication Systems and Network Technologies, 2012.
    [9] L. Wang, X. Chen, and Q. Liu, “A lightweight intelligent manufacturing system based on cloud computing for plate production,” Mobile Networks and Applications, pp. 1–12, 2017.
    [10] F. Tao and Q. Qi, “New it driven service-oriented smart manufacturing: Framework and characteristics,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. PP, no. 99, pp. 1–11, 2017.
    [11] S. Qanbari, F. Li, and S. Dustdar, “Toward portable cloud manufacturing services,” IEEE Internet Computing, vol. 18, no. 6, pp. 77–80, 2014.
    [12] J. Puttonen, A. Lobov, M. Soto, and J. Lastra, “Cloud computing as a facilitator for web service composition in factory automation,” Journal of Intelligent Manufacturing, pp. 1–14, 2016.
    [13] C. Alexakos and A. Kalogeras, “Exposing mes functionalities as enabler for cloud manufacturing,” in Proceedings of the IEEE 13th International Workshop on Factory Communication Systems (WFCS), 2017.
    [14] K. Pathan and M. Patil, “Survey of cooperative advance driver assistance systems,” in Proceedings of the International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 2016.
    [15] Z. Wu and S. Naik, “Dsp applications in engine control and onboard diagnostics: Enabling greener automobiles,” IEEE Signal Processing Magazine, vol. 34, no. 2, pp. 70–81, 2017.
    [16] C.-C. Chen, Y.-C. Lin, M.-H. Hung, C.-Y. Lin, Y.-J. Tsai, and F.-T. Cheng, “A novel cloud manufacturing framework with auto-scaling capability for machine tool industry,” International Journal of Computer-Integrated Manufacturing (IJCIM), vol. 29, no. 7, pp. 786–804, 2016.
    [17] A. Botta, W. Donato, V. Persico, and A. Pescape, “Integration of cloud computing and internet of things: A survey,” Future Generation Computer Systems, vol. 56, pp. 684–700, 2016.
    [18] D. Linthicum, “Cloud computing changes data integration forever: What’s needed right now,” IEEE Cloud Computing, vol. 4, no. 3, pp. 50–53, 2017.
    [19] L. Wei, H. Zhu, Z. Cao, X. Dong, W. Jia, Y. Chen, and A. Vasilakos, “Security and privacy for storage and computation in cloud computing,” Information Sciences, vol. 258, pp. 371–386, 2014.
    [20] A. Dave, B. Patel,and G. Bhatt, “Load balancing in cloud computing using optimization techniques: A study,” in Proceedings of the International Conference on Communication and Electronics Systems (ICCES), 2016.
    [21] X. Ye, Y. Yin, and L. Lan, “Energy-efficient many-objective virtual machine placement optimization in a cloud computing environment,” IEEE Access, vol. 5, pp. 16006–16020, 2017.
    [22] J. Chase and D. Niyato, “Joint optimization of resource provisioning in cloud computing,” IEEE Transactions on Services Computing, vol. 10, no. 3, pp. 396–409, 2017.
    [23] E. Sanchez, P. Clemente, A. Prieto, J. Conejero, and R. Echeverria, “Migrasoa: Migration of legacy web applications to service oriented architectures (soa),” IEEE Latin America Transactions, vol. 15, no. 7, pp. 1306–1311, 2017.
    [24] A. Ahrabian, S. Kolozali, S. Enshaeifar, C. Cheong-Took, and P. Barnaghi, “Data analysis as a web service: A case study using iot sensor data,” in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017.
    [25] T. Nguyen, A. Colman, and J. Han, “A feature-based framework for developing and provisioning customizable web services,” IEEE Transactions on Services Computing, vol. 9, no. 4, pp. 496–510, 2016.
    [26] L. Ren, L. Zhang, L. Wang, F. Tao, and X. Chai, “Cloud manufacturing: key characteristics and applications,” International Journal of Computer Integrated Manufacturing (IJCIM), vol. 30, no. 6, pp. 501–515, 2017.
    [27] F. Tao, Y. Zuo, L. Xu, and L. Zhang, “Iot-based intelligent perception and access of manufacturing resource toward cloud manufacturing,” IEEE Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1547–1557, 2014.
    [28] C. Yang, G. Huang, W. Shen, T. Lin, X. Wang, and S. Lan, “Open and collaborative product design and production in iot-enabled manufacturing cloud,” in Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2016.
    [29] H. Zheng, Y. Feng, and J. Tan, “A hybrid energy-aware resource allocation approach in cloud manufacturing environment,” IEEE Access, vol. 5, pp. 12648–1265, 2017.
    [30] C. Esposito, A. Castiglione, B. Martini, and K. Choo, “Cloud manufacturing: Security, privacy, andforensic concerns,” IEEE Cloud Computing, vol. 3, no. 4, pp. 16–22, 2016.
    [31] X. Wang, L. Wang, A. Mohammed, and M. Givehchi, “Ubiquitous manufacturing system based on cloud: A robotics application,” Robotics and Computer-Integrated Manufacturing, vol. 45, pp. 116–125, 2017.

    下載圖示 校內:2020-09-15公開
    校外:2020-09-15公開
    QR CODE