| 研究生: |
李育達 Lee, Yu-Ta |
|---|---|
| 論文名稱: |
利用電流堵塞層改善大面積氮化鎵發光二極體電流擴散之研究 The Improvement of Current Spreading on High-Power GaN-based LEDs by The Current Blocking Layer Structure |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 發光二極體 、大面積 |
| 外文關鍵詞: | LED, High-power |
| 相關次數: | 點閱:43 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的主要研究目的為改善大面積氮化鎵發光二極體光輸出功率。在氮化鎵發光二極體中,電流易由p型厚電極注入多重量子井, 而在電極下方所發出的光,容易被電極遮蔽或反射進而被材料所吸收,造成光輸出功率的損失。在本論文中,利用活性離子蝕刻機以三氯化硼氣體在p型金屬電極下方蝕刻出適當深度之凹槽,再將二氧化矽濺鍍於凹槽底部,以杜絕電流向下導通而形成較佳的電流分散特性,當蒸鍍完p型厚電極於此區域後,電流在向凹槽側壁擴散可有效解決電流在正負電極間走最短路徑的擁塞現象而達到電流分布均勻、減低熱效應,進而提高發光效率。
利用CCD照相來觀察發光二極體發光分佈狀況,可證明以三氯化硼蝕刻適度深度的凹槽,再以二氧化矽於底部絕緣的方法,可使發光二極體的光電特性獲得改善。
The purpose of this research is to improve the light output power of high-power light emitting diodes (LEDs), we try to improve the current crowding phenomenon and obtain better optical and electrical properties. The efficiency of output power will reduce because of the light below the p-pad will be eclipsed or reflected by the p-type thick metal electrode. We use the concept of current blocking layer (CBL) to decrease the injection current beneath the p-type thick metal electrode and enhance the efficiency of light output power further. On the other hand, the current crowding will occur because of the beeline in two pads. We dig a fillister structure below the p-pad region by using reactive ion etching (RIE) system and deposit thin silicon oxide on the bottom of the fillister for insulator and avoiding the leakage current increasing. We expect the injection current spreading to the sidewalls of the fillister initially to solve the problem of the current crowding, and reduce the heat effect then improving the efficiency better.
In addition to the optical and electrical properties of the LEDs, we use the CCD system to photograph the luminescence distribution of the LEDs and prove the improvement of the uniform current spreading by digging a fillister with proper depth using BCl3 plasma and make the bottom insulating by depositing thin SiO2.
Chapter 1
[1] N. Narendran, J. Bullough, N. Maliyagoda, and A. Bierman, “What is useful life for white light LEDs”, J. Illum. Eng. Soc., 30, pp. 57-67 (2001).
[2] N. Narendrn, N. Maliyagoda, L. Deng, and R. Pysar, “Characterizing LEDs for General Illumination Applications: Mixed-color and phosphor-based white source”, Proc. SPIE, 4445, pp.137-147 (2001).
[3] Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazki, and T. Mukai, “Phosphor-conversion white light-emitting diodes using InGaN near-ultraviolet chip”, Jpn. J. Appl. Phys., 41, pp. 371-373 (2002).
[4] W. Schmid, F. Eberhard, R. Jager, R. King, J. Joos, and K. Ebeling, “45% quantum-efficiency light-emitting diodes with radial outcoupling taper”, Proc. SPIE, 3938, pp. 90-97 (2000).
[5] R. Windisch, C. Rooma, M. Kuijk, G. Borghs, G. H. Doehler, and P. Hremans, “Impact of texture-enhanced transmission on high-efficiency furgace-textured light-emitting diodes”, Appl. Phys. Lett., 79, pp. 2315-2317 (2001).
[6] H. Sugawara, M. Ishakawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes”, Appl. Phys. Lett., 58, pp. 1010-1012 (1991).
[7] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Current blocking layer in GaN light-emitting diode”, Proc. SPIE - Int. Soc. Opt. Eng., 4445, pp. 165-171 (2001).
[8] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer”, J. Appl. Phys., 92, pp. 2248-2250 (2002).
Chapter 2
[1] Z. X. Qin , Z. Z. Chen, H. X. Zhang, X. M. Ding, X. D. Hu, T. J. Yu, and G. Y. Zhang, “The role of Ni and Au on transparent film of blue LEDs”, Solid State Electronic., 47, pp.1741-1743 (2003).
[2] C. T. Lee, and H. W. Kao, “Long-term thermal stability of Ti/Al/Pt/Au Ohmic contacts to n-type GaN”, Appl. Phys. Lett., 76, pp. 2364-2366 (2000).
[3] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and Hyunsang Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading”, Appl. Phys. Lett., 77, pp. 1903-1904 (2000).
[4] H. Kim, S. J. Park, and H. Hwang, “Effects of Current Spreading on the Performance of GaN-Based Light-Emitting Diodes”, IEEE T. Electron Dev., 48, pp. 1065-1069 (2001).
Chapter 3
[1] A. Ebong, S. Arthur, E. Doweny, X. A. Cao, S. LeBoeuf, and D. W. Merfeld, “Device and circuit modeling of GaN/InGaN light emitting diodes (LEDs) for optimum current spreading”, Solid State Electronic., 47, pp. 1817-1823 (2003).
Chapter 4
[1] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang, “ InGaN/GaN quantum well inrerconnected microdisk light emitting diodes”, Appl. Phys. Lett., 77, pp. 3236-3238 (2000).
[2] H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen “InGaN/GaN Light Emitting Diodes with a Lateral Current Blocking Structure”, Jpn. J. Appl. Phys., 43, pp. 2006-2008 (2004).
[3] Y. K. Su, S. J. Chang, S. C. Wei, R. W. Chuang, S. M. Chen, and W. L. Li, “Niride-based LEDs With n--GaN Current Spreading Layers”, IEEE Electron. Dev. Lett., 26, pp. 891-893 (2005).
[4] M. Nakaji, T. Egawa, H. Ishikawawa, S. Arulkumaran, and T. Jimbo, “Characteristics of BCl3 plasma-etched GaN Schottky diodes”, Jpn. J. Appl. Phys., 41, pp. 493 (2002).
[5] S. Tripathy, A. Ramam, S. J. Chua, J. S. Pan, and Alfred Huan, “Characterization of inductively coupled plasma etched surface of GaN using Cl2/BCl3 chemistry”, J. Vac. Sci. Technol. A, 19, pp. 2522-2532 (2001).
[6] A. P. Zhang, G. Dang, F. Ren, X. A. Cao, H. Cho, E. S. Lambers, S. J. Pearton, R. J. Shul, L. Zhang, A. G. Baca, R. Hickman, and J. M. Van Hove, “Cl2/Ar high-density-plasma damage in GaN Schottky diodes”, J. Elecrochem. Soc., 147, pp. 719-722 (2000).
[7] D. G. Kent, K. P. Lee, A. P. Zhang, B. Luo, M. E. Overberg, C. R. Abernathy, F. Ren, K. D. Mackenzie, S. J. Pearton, and Y. Nakagawa, “Effect of N2 plasma treatments on dry etch damage in n- and p-type GaN”, Solid State Electronic., 45 , pp. 467-470 (2001).
[8] X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren, R. J Shul, L. Zhang, R. Hickman, and J. M. Van Hove, “Electrical effects of plasma damage in p-GaN”, Appl. Phys. Lett., 75, pp. 2569-2571 (1999).
[9] G. Parish, L. M. Watson, G Umana Membreno, and B. D. Nener, “Investigations of ohmic contacts to reactive-ion-etched p-type GaN”, Proc. SPIE - Int. Soc. Opt. Eng., 5276, pp. 47-56 (2004).
[10] H. F. Hong, C. K. Chao, J. I. Chyi, and Y. C. Tzeng, “Reactive ion etching of GaN/InGaN using BCl3 plasma”, Mater. Chem. Phys., 77, pp. 411-415 (2002).
[11] Q. Fan, S. Chevtchenko, X. Ni, S. J. Cho, and H. Morkoc, “Recovery of GaN surface after reactive ion etching”, Gallium Nitride Materials and Devices, 6121, pp. 221-235 (2006).
[12] X. A. Cao, A. P. Zhang, G. T. Dang, and F. Ren, “Schottky diode measurement of dry etch damage in n- and p-type GaN”, J. Vac. Sci. Technol. A, 18, pp. 1144-1148 (2000).
[13] R. Cheung, R. J. Reeves, B. Rong, S. A. Brown, E. J. M. Fakkeldij, E. van der Drift, and M. Kamp, “High resolution reactive ion etching of GaN and etch-induced effects”, J. Vac. Sci. Technol. B, 17, pp. 2759-2763 (1999).
[14] D. S. Li, H. Chen, H. B. Yu, H. Q. Jia, Q. Huang, and J. M. Zhou, “Dependence of leakage current on dislocations in GaN-based light-emitting diodes”, J. Appl. Phys., 96, pp. 1111-1114 (2004).
[15] S. Hashimoto, Y. Yoshizumi, T. Tanabe, and M. Kiyama, “High-purity GaN epitaxial layers for power devices on low-dislocation-density GaN substrates”, J. Cryst. Growth, 298, pp. 871-874 (2007).
[16] X. A. Cao, J. A. Teetsov, F. Shanhedipour-Sandvik, and S. D. Arthur, “Microstructural origin of leakage current in GaN/InGaN light-emitting diodes”, J. Cryst. Growth, 264, pp. 172-177 (2004).
[17] E. G. Brazel, M. A. Chin, and V. Narayanamurti, “Direct observation of localized high current densities in GaN films”, Appl. Phys. Lett., 74, pp. 2367-2369 (1999).
[18] A. A Pomarico, D. Huang, J. Dickinson, A. A. Baski, R. Cingolani, H. Morkoc, and R. Molnar, “Current mapping of GaN films by conductive atomic force microscopy”, Appl. Phys. Lett., 82, pp. 1890-1892 (2003).
[19] B. S. Simpkins, E. T. Yu, P. Waltereit, and J. S. Speck, “Corelated scanning Kelvin probe and conductive atomic force microscopy studies of dislocations in gallium nitride”, J. Appl. Phys., 94, pp. 1448-1453 (2003).
[20] H. C. Wang, Y. K. Su, Y. H. Chung, C. L. Lin, W. B. Chen, and S. M. Chen, “AlGaInP light emitting diode with a current-blocking structure”, Solid State Electronic., 49, pp. 37-41 (2005).
[21] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Current blocking layer in GaN light-emitting diode”, Proc. SPIE - Int. Soc. Opt. Eng., 4445, pp. 165-171 (2001).
[22] Y. B. Lee, R. Takaki, H. Sato, Y. Naoi, and S. Sakai, “High efficiency GaN-based LEDs using plasma selective treatment of p-GaN surface”, Phys. Stat. Sol. (a), 200, pp. 87-90 (2003).
[23] C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, and S. M. Chen, “Improved Light-Output Power of GaN LEDs by Selective Region Activation”, IEEE Photonic. Tech. L., 16, pp.1444-1446 (2004).
[24] C. M. Lee, C. C. Chuo, Y. C. Liu, I. L. Chen, and J. I. Chyi, “InGaN-GaN MQW LEDs With Current Blocking Layer Formed by Selective Activation”, IEEE Electron. Dev. Lett., 25, pp.384-386 (2004).
[25] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer”, J. Appl. Phys., 92, pp.2248-2250 (2002).