簡易檢索 / 詳目顯示

研究生: 吳建勳
Wu, Chien-Hsun
論文名稱: 胎盤絨毛間葉幹細胞之鑑定及特性分析
Identification and characterization of mesenchymal stem cells from placental villi
指導教授: 黃玲惠
Huang, Ling-Hui
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 94
中文關鍵詞: 胎盤,絨毛纖維,間葉幹細胞
外文關鍵詞: placenta, chorionic villi, mesenchymal stem cells
相關次數: 點閱:137下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多向性幹細胞是現今臨床研究與醫療上細胞療法與基因療法的主要素材,而在再生醫學、組織工程、藥理研究開發上也深具應用潛能。最近的研究發現,在胎兒或新生兒的組織中普遍有著幹細胞的存在,因此我們合理的推測胎盤組織中也可能存在著較原始具分化潛能的幹細胞。本研究利用適當之培養條件成功的從胎盤中培養出間葉幹細胞,此細胞呈現類似纖維母細胞之外觀,表達ABCG2, CD29, CD44, CD73, CD90, CD105,不表現SSEA-4, HLA-DR, CD18, CD31, CD45, CD117, CD133…等細胞標誌,與目前所知間葉幹細胞的標誌類似,且經由適當的誘導能朝向脂肪、成骨細胞之分化,顯示此細胞仍保有分化之潛能,除此之外此細胞還有HOX-b4、Bmi-1、Oct-4、Rex-1等幹細胞相關功能基因之表達。
    在證實胎盤中的確能夠分離、培養出間葉幹細胞之後,更深入一步進行初始胎盤細胞中間葉幹細胞之鑑定,結果發現一般間葉幹細胞所表達之細胞標誌也普遍表達於其他細胞中,而其中較重要的是只有約1%的細胞有CD90的表達,且經由雙重免疫螢光染色以及CD90+細胞分選實驗後發現,CD90+之細胞也會同時表達ABCG2、CD9、CD29、CD73和CD105,而CD90+之細胞只有部分細胞表達CD44,CD44+/CD90+細胞所呈現的細胞標誌特徵與目前所知的間葉幹細胞類似,因此很可能CD90+/CD44+之細胞群即可視為是初始胎盤細胞中的間葉幹細胞。

    Multipotent stem cells can be applied in clinical medicine for gene therapy and cell therapy. Stem cells have great promise as tools for regenerative medicine, tissue engineering and pharmaceutical research. Human mesenchymal stem cells (MSCs) have been isolated and identified from various adult and fetal tissues. In this investigation, we isolated mesenchymal stem cells from termed placenta. The placenta-derived mesenchymal stem cells exhibit fibroblast-like morphology and express ABCG2, CD29, CD44, CD73, CD90 and CD105 but not SSEA-4, HLA-DR, CD18, CD31, CD45, CD117, CD133. These cells have multilineage potential because they were able to differentiate into cells of adipogenic and osteogenic lineages. The placenta-derived MSCs were also demonstrated to express the mRNA of HOX-b4, Bmi-1, Oct-4, and Rex-1 by reverse transcription PCR.
    The population of cells flushed from placenta was further investigated by flow cytometry and only about 1% population was found to be positive for CD90. Through double immunofluorescent staining and confirmation by fluorescent activated cell sorting of the CD90+ cells, they were found to co-express with ABCG2, CD9, CD29, CD73, and CD105, but only part with CD44. It is possible that the subpopulation of CD90+/CD44+ cells could be regarded as one primitive population of MSCs from placenta.

    中文摘要......................................................................................... i Abstract.......................................................................................... ii 誌謝............................................................................................... iii 目錄............................................................................................... iv 表目錄......................................................................................... viii 圖目錄........................................................................................... ix 英文縮寫對照表(Abbreviation List) .............................................x 第一章、序論................................................................................. 1 1.1. 幹細胞(stem cells)......................................................................... 1 1.1.1. 體幹細胞(somatic stem cells).............................................. 1 1.1.2. 幹細胞發展之現況............................................................. 2 1.1.3. 間葉幹細胞(MSCs) ............................................................ 2 1.1.4. 間葉幹細胞的鑑定............................................................. 3 1.2. 胚外組織(extra-embryonic tissues) ............................................... 4 1.2.1. 胚外組織發育來源............................................................. 4 1.2.2. 足月胎盤構造(structure of full-term placenta).................... 5 1.2.3. 胚外組織幹細胞................................................................. 5 1.2.4. 胎盤間葉幹細胞存在的可能性.......................................... 6 1.2.5. 胎盤絨毛細胞的分離......................................................... 7 1.3. 幹細胞標誌(stem cell markers)..................................................... 8 1.3.1. ABCG2 ............................................................................... 8 1.3.2. CD29................................................................................... 8 1.3.3. CD44................................................................................... 9 1.3.4. CD73................................................................................... 9 1.3.5. CD90................................................................................... 9 1.3.6. CD105............................................................................... 10 1.4. 幹細胞相關功能性基因............................................................. 10 1.4.1. Oct-4 ................................................................................. 11 1.4.2. Bmi-1 ................................................................................ 11 1.4.3. Rex-1................................................................................. 11 1.4.4. HOX-b4............................................................................. 12 1.5. 間葉幹細胞之分化..................................................................... 12 1.5.1. 典型分化潛能................................................................... 13 1.5.2. 非典型分化潛能............................................................... 14 1.6. 研究動機..................................................................................... 15 第二章、實驗材料與方法........................................................... 16 2.1. 實驗儀器..................................................................................... 16 2.2. 實驗藥品..................................................................................... 17 2.3. 實驗方法..................................................................................... 19 2.3.1. 胎盤檢體收集................................................................... 19 2.3.2. 胎盤絨毛組織細胞分離................................................... 20 2.3.3. 組織免疫螢光染色........................................................... 20 2.3.4. 細胞免疫組織化學染色................................................... 21 2.3.5. 細胞免疫螢光染色........................................................... 21 2.3.6. 免疫磁珠分離................................................................... 21 2.3.7. 流式細胞儀分析............................................................... 22 2.3.8. 初代細胞培養................................................................... 22 2.3.9. 細胞繼代........................................................................... 22 2.3.10. 細胞RNA 純化................................................................ 23 2.3.11. 反轉錄聚合酶反應 (RT-PCR) ......................................... 23 2.3.12. 分化潛能測試.................................................................. 23 第三章、實驗結果....................................................................... 27 3.1. 細胞分離、培養及生長情形...................................................... 27 3.2. 細胞標誌表達之分析................................................................. 28 3.2.1. 初始分離細胞................................................................... 28 3.2.2. 培養後貼附之細胞........................................................... 28 3.2.3. 形成聚落之細胞............................................................... 29 3.3. 分化能力測試............................................................................. 29 3.3.1. 成骨分化........................................................................... 30 3.3.2. 脂肪分化........................................................................... 30 3.4. 基因表現之分析......................................................................... 30 3.5. 初始胎盤細胞中間葉幹細胞之鑑定.......................................... 30 3.5.1. 細胞大小以及顆粒性之分析............................................ 31 3.5.2. 雙重細胞標誌之分析....................................................... 31 3.5.3. CD90+細胞之分離分析................................................... 32 第四章、討論............................................................................... 33 4.1. 初始分離之胎盤細胞................................................................. 33 4.2. 胎盤間葉幹細胞之擴增培養...................................................... 34 4.3. 細胞標誌之表達......................................................................... 34 4.4. 胎盤間葉幹細胞之分化潛能...................................................... 35 4.5. 初始胎盤細胞中間葉幹細胞之鑑定.......................................... 35 4.6. CD90 可能扮演之角色............................................................... 36 第五章、參考文獻....................................................................... 38 附錄.............................................................................................. 50 自述.............................................................................................. 83

    1. National Institutes of Health (U.S.). Stem cells : scientific progress and future research directions. 2001, [Washington, D.C.]: National Institutes of Health, Dept. of Health and Human Services. 1 v. (various pagings).
    2. Benito, A.I., et al., Hematopoietic stem cell transplantation using umbilical cord blood progenitors: review of current clinical results. Bone Marrow Transplant, 2004. 33(7): p. 675-90.
    3. Friedenstein, A.J., et al., Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol, 1974. 2(2): p. 83-92.
    4. Castro-Malaspina, H., et al., Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood, 1980. 56(2): p. 289-301.
    5. Friedenstein, A.J., Stromal mechanisms of bone marrow: cloning in vitro and retransplantation in vivo. Haematol Blood Transfus, 1980. 25: p. 19-29.
    6. Wang, Q.R., Z.J. Yan, and N.S. Wolf, Dissecting the hematopoietic microenvironment. VI. The effects of several growth factors on the in vitro growth of murine bone marrow CFU-F. Exp Hematol, 1990. 18(4): p. 341-7.
    7. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-7.
    8. Krebsbach, P.H., et al., Bone marrow stromal cells: characterization and clinical application. Crit Rev Oral Biol Med, 1999. 10(2): p. 165-81.
    9. Conget, P.A. and J.J. Minguell, Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999. 181(1): p. 67-73.
    10. Bruder, S.P., N. Jaiswal, and S.E. Haynesworth, Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem, 1997. 64(2): p. 278-94.
    11. Mackay, A.M., et al., Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng, 1998. 4(4): p. 415-28.
    12. Carlson, B.M., Human embryology & developmental biology. 2nd ed. 1999, St. Louis: Mosby. xvii, 494 p.
    13. Fitzgerald, M.J.T. and M. Fitzgerald, Human embryology. 1994, London ; Philadelphia: Bailliáere Tindall. 251 p.
    14. Joshi, V.V., Handbook of placental pathology. 1994, New York: Igaku-Shoin. xiv, 128 p.
    15. Knudtzon, S., In vitro growth of granulocytic colonies from circulating cells in human cord blood. Blood, 1974. 43(3): p. 357-61.
    16. Gluckman, E., et al., Hematopoietic reconstitution in a patient with Fanconi's anemia by means of umbilical-cord blood from an HLA-identical sibling. N Engl J Med, 1989. 321(17): p. 1174-8.
    17. Erices, A., P. Conget, and J.J. Minguell, Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol, 2000. 109(1): p. 235-42.
    18. Huss, R., et al., Evidence of peripheral blood-derived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells, 2000. 18(4): p. 252-60.
    19. Goodwin, H.S., et al., Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transplant, 2001. 7(11): p. 581-8.
    20. Lee, O.K., et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-75.
    21. Pesce, M., et al., Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res, 2003. 93(5): p. e51-62.
    22. Covas, D.T., et al., Isolation and culture of umbilical vein mesenchymal stem cells. Braz J Med Biol Res, 2003. 36(9): p. 1179-83.
    23. Babaev, V.R., et al., Heterogeneity of smooth muscle cells in atheromatous plaque of human aorta. Am J Pathol, 1990. 136(5): p. 1031-42.
    24. Martin, G.M., C.E. Ogburn, and T.N. Wight, Comparative rates of decline in the primary cloning efficiencies of smooth muscle cells from the aging thoracic aorta of two murine species of contrasting maximum life span potentials. Am J Pathol, 1983. 110(2): p. 236-45.
    25. Chamley, J.H., G.R. Campbell, and G. Burnstock, Dedifferentiation, redifferentiation and bundle formation of smooth muscle cells in tissue culture: the influence of cell number and nerve fibres. J Embryol Exp Morphol, 1974. 32(2): p. 297-323.
    26. Fritz, K.E., J. Jarmolych, and A.S. Daoud, Association of DNA synthesis and apparent dedifferentiation of aortic smooth muscle cells in vitro. Exp Mol Pathol, 1970. 12(3): p. 354-62.
    27. Wissler, R.W. and D. Vesselinovitch, Comparative pathogenetic patterns in atherosclerosis. Adv Lipid Res, 1968. 6: p. 181-206.
    28. Canfield, A.E., et al., Association of thrombospondin-1 with osteogenic differentiation of retinal pericytes in vitro. J Cell Sci, 1996. 109 ( Pt 2): p. 343-53.
    29. Watson, K.E., et al., TGF-beta 1 and 25-hydroxycholesterol stimulate osteoblast-like vascular cells to calcify. J Clin Invest, 1994. 93(5): p. 2106-13.
    30. Tintut, Y., et al., cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem, 1998. 273(13): p. 7547-53.
    31. Wada, T., et al., Calcification of vascular smooth muscle cell cultures: inhibition by osteopontin. Circ Res, 1999. 84(2): p. 166-78.
    32. Jono, S., et al., Parathyroid hormone-related peptide as a local regulator of vascular calcification. Its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 1997. 17(6): p. 1135-42.
    33. Proudfoot, D., et al., Calcification of human vascular cells in vitro is correlated with high levels of matrix Gla protein and low levels of osteopontin expression. Arterioscler Thromb Vasc Biol, 1998. 18(3): p. 379-88.
    34. Shioi, A., et al., Beta-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 1995. 15(11): p. 2003-9.
    35. Lian, J.B. and G.S. Stein, Concepts of osteoblast growth and differentiation: basis for modulation of bone cell development and tissue formation. Crit Rev Oral Biol Med, 1992. 3(3): p. 269-305.
    36. Mohler, E.R., 3rd, et al., Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis, 1999. 8(3): p. 254-60.
    37. Rajamannan, N.M., et al., Human aortic valve calcification is associated with an osteoblast phenotype. Circulation, 2003. 107(17): p. 2181-4.
    38. Jarvelainen, H.T., et al., Differential expression of small chondroitin/dermatan sulfate proteoglycans, PG-I/biglycan and PG-II/decorin, by vascular smooth muscle and endothelial cells in culture. J Biol Chem, 1991. 266(34): p. 23274-81.
    39. Shanahan, C.M., et al., High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest, 1994. 93(6): p. 2393-402.
    40. Doherty, M.J., et al., Vascular pericytes express osteogenic potential in vitro and in vivo. J Bone Miner Res, 1998. 13(5): p. 828-38.
    41. Farrington-Rock, C., et al., Chondrogenic and adipogenic potential of microvascular pericytes. Circulation, 2004. 110(15): p. 2226-32.
    42. Romanov, Y.A., V.A. Svintsitskaya, and V.N. Smirnov, Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 2003. 21(1): p. 105-10.
    43. Andreeva, E.R., et al., Continuous subendothelial network formed by pericyte-like cells in human vascular bed. Tissue Cell, 1998. 30(1): p. 127-35.
    44. Thiede, H.A., Studies of the human trophoblast in tissue culture. 1. Cultural methods and histochemical staining. Am J Obstet Gynecol, 1960. 79: p. 636-47.
    45. Thiede, H.A. and J.H. Rudolph, A method for obtaining monolayer cultures of human fetal cells from term placentas. Proc Soc Exp Biol Med, 1961. 107: p. 565-9.
    46. Kliman, H.J., et al., Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology, 1986. 118(4): p. 1567-82.
    47. Zhang, Y., et al., Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol, 2004. 32(7): p. 657-64.
    48. Azizi, S.A., et al., Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts. Proc Natl Acad Sci U S A, 1998. 95(7): p. 3908-13.
    49. Maliepaard, M., et al., Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res, 2001. 61(8): p. 3458-64.
    50. Zhou, S., et al., The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 2001. 7(9): p. 1028-34.
    51. Shimano, K., et al., Hepatic oval cells have the side population phenotype defined by expression of ATP-binding cassette transporter ABCG2/BCRP1. Am J Pathol, 2003. 163(1): p. 3-9.
    52. Tamaki, T., et al., Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol, 2002. 157(4): p. 571-7.
    53. Lassalle, B., et al., 'Side Population' cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development, 2004. 131(2): p. 479-87.
    54. Summer, R., et al., Side population cells and Bcrp1 expression in lung. Am J Physiol Lung Cell Mol Physiol, 2003. 285(1): p. L97-104.
    55. Martin, C.M., et al., Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol, 2004. 265(1): p. 262-75.
    56. Lechner, A., et al., Nestin-positive progenitor cells derived from adult human pancreatic islets of Langerhans contain side population (SP) cells defined by expression of the ABCG2 (BCRP1) ATP-binding cassette transporter. Biochem Biophys Res Commun, 2002. 293(2): p. 670-4.
    57. Watanabe, K., et al., Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett, 2004. 565(1-3): p. 6-10.
    58. de Paiva, C.S., et al., ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells, 2005. 23(1): p. 63-73.
    59. Bhatt, R.I., et al., Novel method for the isolation and characterisation of the putative prostatic stem cell. Cytometry, 2003. 54A(2): p. 89-99.
    60. Airas, L., et al., Differential regulation and function of CD73, a glycosyl-phosphatidylinositol-linked 70-kD adhesion molecule, on lymphocytes and endothelial cells. J Cell Biol, 1997. 136(2): p. 421-31.
    61. Thompson, L.F., et al., Antibodies to 5'-nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral blood T cells to proliferate. J Immunol, 1989. 143(6): p. 1815-21.
    62. Airas, L., et al., CD73 is involved in lymphocyte binding to the endothelium: characterization of lymphocyte-vascular adhesion protein 2 identifies it as CD73. J Exp Med, 1995. 182(5): p. 1603-8.
    63. Airas, L. and S. Jalkanen, CD73 mediates adhesion of B cells to follicular dendritic cells. Blood, 1996. 88(5): p. 1755-64.
    64. Gutensohn, W. and E. Thiel, Prognostic implication of ecto-5'-nucleotidase activity in acute lymphoblastic leukemia. Cancer, 1990. 66(8): p. 1755-8.
    65. Garnett D, B.A., Carmo AM, Beyers AD. , The association of the protein tyrosin kinase p56lck and p60 fyn with the glycosylphosphatidylinositol-anchored proteins Thy-1 and CD48 in rat thymocytes is dependent on the state of cellular activation. . Eur J Immunol, 1993. 23(10): p. 2540-4.
    66. Narisawa-Saito M, Y.Y., Morioka T, Oite T, Shimizu F., Thy-1 molecule associates with protein kinase(s) in rat mesangial cells. Clin Exp Immunol, 1996. 106(1): p. 86-90.
    67. Saalbach, A., et al., The monoclonal antibody AS02 recognizes a protein on human fibroblasts being highly homologous to Thy-1. Arch Dermatol Res, 1998. 290(7): p. 360-6.
    68. Freimuth, W.W., W.J. Esselman, and H.C. Miller, Release of thy-1.2 and thy-1.1 from lymphoblastoid cells: partial characterization and antigenicity of shed material. J Immunol, 1978. 120(5): p. 1651-8.
    69. Vitetta, E.S., J.W. Uhr, and E.A. Boyse, Metabolism of H-2 and Thy-1 (theta) alloantigens in murine thymocytes. Eur J Immunol, 1974. 4(4): p. 276-82.
    70. Saalbach, A., et al., Detection of human soluble Thy-1 in serum by ELISA. Fibroblasts and activated endothelial cells are a possible source of soluble Thy-1 in serum. Cell Tissue Res, 1999. 298(2): p. 307-15.
    71. Letarte M, G.A., and Vera S, In: Leukocyte Typing V (ed. Schlossman SF et al) Oxford University Press, Oxford. 1995. 1756-1759.
    72. Lessard, J. and G. Sauvageau, Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 2003. 423(6937): p. 255-60.
    73. Park, I.K., et al., Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 2003. 423(6937): p. 302-5.
    74. Molofsky, A.V., et al., Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature, 2003. 425(6961): p. 962-7.
    75. Leung, C., et al., Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature, 2004. 428(6980): p. 337-41.
    76. Ben-Shushan, E., et al., Rex-1, a gene encoding a transcription factor expressed in the early embryo, is regulated via Oct-3/4 and Oct-6 binding to an octamer site and a novel protein, Rox-1, binding to an adjacent site. Mol Cell Biol, 1998. 18(4): p. 1866-78.
    77. Jiang, Y., et al., Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 2002. 418(6893): p. 41-9.
    78. D'Ippolito, G., et al., Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci, 2004. 117(Pt 14): p. 2971-81.
    79. Sauvageau, G., et al., Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc Natl Acad Sci U S A, 1994. 91(25): p. 12223-7.
    80. Bjornsson, J.M., et al., Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol Cell Biol, 2003. 23(11): p. 3872-83.
    81. Seaberg, R.M., et al., Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol, 2004. 22(9): p. 1115-24.
    82. Tuan, R.S., G. Boland, and R. Tuli, Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther, 2003. 5(1): p. 32-45.
    83. Digirolamo, C.M., et al., Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br J Haematol, 1999. 107(2): p. 275-81.
    84. Reyes, M., et al., Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood, 2001. 98(9): p. 2615-25.
    85. M., O., Marrow stromal stem cells. J Cell Sci Suppl, 1988. 10: p. 63-76.
    86. Friedenstein, A.J., R.K. Chailakhyan, and U.V. Gerasimov, Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet, 1987. 20(3): p. 263-72.
    87. Owen M, F.A., Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp, 1988. 136: p. 42-60.
    88. Haynesworth SE, G.J., Goldberg VM, Caplan AI, Characterization of cells with osteogenic potential from human marrow. Bone, 1992. 13: p. 81-88.
    89. Jaiswal, N., et al., Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem, 1997. 64(2): p. 295-312.
    90. Bianco P, C.M., Dearden LC, Bonucci E, Alkaline phosphatase positive precursors of adipocytes in the human bone marrow. Br J Haematol, 1988. 68: p. 401-403.
    91. Hanada K, D.J., Caplan AI, Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein-2 on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res, 1997. 12: p. 1606.
    92. Chen D, J.X., Harris MA, et al. , Differential roles for bone marrow morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J Cell Biol, 1998. 142: p. 295.
    93. Suzawa, M., Takada, I., Yanagisawa, J., Ohtake, F., Ogawa,S., Yamauchi, T., Kadowaki, T., Takeuchi, Y., Shibuya, H.,Gotoh, Y., Matsumoto, K., & Kato, S., Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nature Cell Biology, 2003. 5: p. 224-230.
    94. Barry, F., Boynton, R. E., Liu, B., & Murphy, J. M., Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Experimental Cell Research, 2001. 268: p. 189-200.
    95. Osyczka, A.M., et al., Multilineage differentiation of adult human bone marrow progenitor cells transduced with human papilloma virus type 16 E6/E7 genes. Calcif Tissue Int, 2002. 71(5): p. 447-58.
    96. Johnstone, B., et al., In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res, 1998. 238(1): p. 265-72.
    97. Galmiche, M.C., et al., Stromal cells from human long-term marrow cultures are mesenchymal cells that differentiate following a vascular smooth muscle differentiation pathway. Blood, 1993. 82(1): p. 66-76.
    98. Wakitani, S., T. Saito, and A.I. Caplan, Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve, 1995. 18(12): p. 1417-26.
    99. Prockop, D.J., Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997. 276(5309): p. 71-4.
    100. Ferrari, G., et al., Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 1998. 279(5356): p. 1528-30.
    101. Woodbury, D., et al., Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res, 2000. 61(4): p. 364-70.
    102. Sanchez-Ramos, J., et al., Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000. 164(2): p. 247-56.
    103. Kopen, G.C., D.J. Prockop, and D.G. Phinney, Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A, 1999. 96(19): p. 10711-6.
    104. Wetzka, B., et al., Isolation of macrophages (Hofbauer cells) from human term placenta and their prostaglandin E2 and thromboxane production. Hum Reprod, 1997. 12(4): p. 847-52.
    105. Miki, T., et al., Stem cell characteristics of amniotic epithelial cells. Stem Cells, 2005. 23(10): p. 1549-59.
    106. Yen, B.L., et al., Isolation of multipotent cells from human term placenta. Stem Cells, 2005. 23(1): p. 3-9.
    107. Aboagye-Mathiesen, G., et al., Isolation and characterization of human placental trophoblast subpopulations from first-trimester chorionic villi. Clin Diagn Lab Immunol, 1996. 3(1): p. 14-22.
    108. Tiveron MC, B.E., Pliego Rivero FB, Selective Inibition of neurite outgrowth on mature astrocytes by Thy-1 glycoprotein. Nature, 1992. 355(6362): p. 745-8.
    109. Ishizu A, I.H., Nakamuru Y, Kikuchi K, Koike T,Yoshiki T. , Interleukin-1α regulates Thy-1 expression on rat vascular endothelial cells. Microvasc Res, 1997. 53(73-8).
    110. Mayani, H. and P.M. Lansdorp, Thy-1 expression is linked to functional properties of primitive hematopoietic progenitor cells from human umbilical cord blood. Blood, 1994. 83(9): p. 2410-7.
    111. Nakamura, Y., et al., Expression of CD90 on keratinocyte stem/progenitor cells. Br J Dermatol, 2006. 154(6): p. 1062-70.
    112. Wiesmann, A., et al., Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Med, 2006. 2: p. 8.
    113. Mezey E, C.K., Harta G, Maki RA, McKercher SR, Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science, 2000. 290: p. 1779-1782.
    114. Fukuda, K., Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells. Congenit Anom (Kyoto), 2002. 42(1): p. 1-9.
    115. Makino, S., et al., Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest, 1999. 103(5): p. 697-705.
    116. Fukuda, K., Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs, 2001. 25(3): p. 187-93.
    117. Strauer, B.E., et al., Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 2002. 106(15): p. 1913-8.
    118. Petersen, B.E., et al., Bone marrow as a potential source of hepatic oval cells. Science, 1999. 284(5417): p. 1168-70.
    119. Alison, M.R., et al., Hepatocytes from non-hepatic adult stem cells. Nature, 2000. 406(6793): p. 257.
    120. Theise, N.D., et al., Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 2000. 31(1): p. 235-40.
    121. Ito, T., et al., Application of bone marrow-derived stem cells in experimental nephrology. Exp Nephrol, 2001. 9(6): p. 444-50.
    122. Majumdar, M.K., et al., Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res, 2000. 9(6): p. 841-8.
    123. Wada, M.R., et al., Generation of different fates from multipotent muscle stem cells. Development, 2002. 129(12): p. 2987-95.
    124. Bosch, P., et al., Osteoprogenitor cells within skeletal muscle. J Orthop Res, 2000. 18(6): p. 933-44.
    125. Qu-Petersen, Z., et al., Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol, 2002. 157(5): p. 851-64.
    126. Adachi, N., et al., Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol, 2002. 29(9): p. 1920-30.
    127. Noth U, O.A., Tuli R, Hickok NJ, Danielson KG, Tuan RS, Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res, 2002. 20: p. 1060-1069.
    128. Osyczka AM, N.U., Danielson KG, Tuan RS, Different osteochondral potential of clonal cell lines derived from adult human trabecular bone. Ann N Y Acad Sci, 2002. 961: p. 73-77.
    129. Tuli R, S.M., Tuli S, Wang ML, Hozack WJ, Manner PA, Danielson KG, Tuan RS, A simple, high-yield method for obtaining multipotential mesenchymal progenitor cells from trabecular bone. . Mol Biotechnol, 2002.
    130. Young, H.E., et al., Human reserve pluripotent mesenchymal stem cells are present in the connective tissues of skeletal muscle and dermis derived from fetal, adult, and geriatric donors. Anat Rec, 2001. 264(1): p. 51-62.
    131. Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28.
    132. Gronthos, S., et al., Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol, 2001. 189(1): p. 54-63.
    133. Nakahara H, G.V., Caplan AI, Culture-expanded human periosteal-derived cells exhibit osteochondral potential in vivo. J Orthop Res, 1991. 9: p. 465-476.
    134. De Bari C, D.A.F., Luyten FP, Human periosteum-derived cells maintain phenotypic stability and chondrogenic potential throughout expansion regardless of donor age. Arthritis Rheum, 2001. 44: p. 85-95.
    135. Diefenderfer DL, B.C., Microvascular pericytes express aggrecan message which is regulated by BMP-2. Biochem Biophys Res Commun, 2000. 269: p. 172-178.
    136. Brighton CT, L.D., Kupcha R, Reilly TM, Jones AR, Woodbury RA 2nd, The pericyte as a possible osteoblast progenitor cell. Clin Orthop, 1992. 275: p. 287-299.
    137. Reilly TM, S.R., Luchetti W, Brighton CT, Similarities in the phenotypic expression of pericytes and bone cells. Clin Orthop 1998. 346: p. 95-103.
    138. Zvaifler NJ, M.-M.L., Adams G, Edwards CJ, Moss J, Burger JA, Maini RN, Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res, 2000. 2: p. 477-488.

    下載圖示 校內:2008-09-14公開
    校外:2008-09-14公開
    QR CODE