簡易檢索 / 詳目顯示

研究生: 韓冠廷
Han, Kuan-Ting
論文名稱: 利用聚醚電紡薄膜製備低界面阻抗電解質以應用於全固態鋰電池
Fabricating low interfacial resistance electrolytes by using polyether electrospun membrane for application in all-solid-state lithium batteries
指導教授: 張鑑祥
Chang, Chien-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 107
中文關鍵詞: 鋰電池聚乙二醇電紡絲全固態電解質
外文關鍵詞: all-solid-state electrolyte, electrospun, lithium battery, poly(ethylene oxide)
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用電紡絲技術製備出多孔性聚乙二醇(poly(ethylene oxide), PEO)高分子纖維薄膜,並將PEO-based預聚體在未聚合前塗佈在鋰金屬表面上,依序放上PEO高分子薄膜與正極,由於纖維薄膜具有多孔性且較薄,因此預聚體能夠滲透入薄膜並浸潤正極表面,加熱聚合後即可製備出全固態鋰電池。由掃描式電子顯微鏡分析可觀察到,PEO-based高分子能夠連續且均勻地填補薄膜的空隙,而所製備的電解質整體厚度小於40 µm。此外,電極表面能夠與電解質緊密貼合,因此界面阻抗約100Ω,電化學穩定電位窗可達5.5 V,具有良好的電化學可逆性。其離子傳導度在60 oC下可達10–4 Scm-1,電池效能在充放電速率0.1C時可達150 mAhg-1,而在高充放電速率7C時仍保有電容25 mAhg-1。然而此電解質面臨到的問題是低機械性質,導致無法有效抑制鋰枝晶生成的影響,而有潛在的短路問題。分別把不同材料的電紡纖維膜應用在PEO-based固態高分子電解質中,比較其對鋰電池效能的影響。結果顯示電紡薄膜必須具離子傳導性,且與PEO-based高分子有相容性,才可獲得較佳的固態電解質電池效能。為了改善PEO固態電解質潛在的短路問題,進一步加入聚偏二氟乙烯(polyvinylidene difluoride, PVDF)製備出PVDF/PEO混合高分子電紡纖維薄膜,應用在PEO-based的固態電解質中。由結果可知,雖然電池充放電效能有下降的趨勢,但在充放電速率0.1C時仍可達150 mAhg–1,充放電速率1C時的電容值也高於120 mAhg–1。此外,由於機械性質的提升,因此有良好抑制鋰枝晶影響的能力,而可提升電池的安全性。

    In this study, a porous poly(ethylene oxide) (PEO) fiber film was prepared by electrospinning technology. Additionally, PEO-based precursor was coated on the surface of lithium metal anode, followed by putting the PEO film and the cathode in order. The PEO-based precursor would permeate into the nanofiber film and cathode. PEO-based precursor could provide a continuous network of Li ions in electrolyte and between electrode and electrolyte. After heating, the all-solid-state lithium batteries were fabricated by thermal polymerization.
    The SEM analysis shows that the PEO-based polymer could uniformly fill the gaps in the film, and the overall thickness of the electrolyte is less than 40 µm. In addition, the well interfacial contact between cathode and electrolyte is the main reason to result in the low interfacial resistance (100Ω). The solid-state electrolytes exhibit good electrochemical stability (onset potential ~5.5V) and good ionic conductivity (10-4 Scm-1 at 60oC). Besides, the capacity of the electrolyte prepared by electrospinning is up to 150 mAh/g under 0.1C at 60℃. The capacity of the electrolyte at the high discharge current (7C) still keeps at 25 mAh/g. However, there is a potential problem with a short circuit due to poor mechanical property.
    In order to improve mechanical property, PEO/PVDF polymer electrospun membranes were prepared by mixing PEO and polyvinylidene difluoride (PVDF) to be applied as the PEO-based all-solid-state electrolyte. From the result of plating-stripping test, a good ability to limit the growth of lithium dendrite was found.
    All the above-mentioned properties demonstrate that the thin electrolyte membrane could be prepared by an electrospun approach and all-solid-state electrolyte with low interfacial resistance is successfully fabricated by coating PEO-based precursor on the lithium metal.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 XI 目錄 XII 表目錄 XVII 圖目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 鋰電池的簡介 2 1.3 鋰電池工作原理 5 1.4 正極材料 7 1.4.1 磷酸鋰鐵正極材料 8 1.4.2 鋰鈷氧化物正極材料 9 1.4.3 鋰鎳鈷錳正極材料 10 1.5 負極材料 10 1.6 黏著劑 11 1.7 電解質 13 1.8 研究動機 14 第二章 文獻回顧 15 2.1 固態電解質 15 2.2 固態高分子電解質 16 2.2.1 Poly (ethylene oxide) 17 2.2.2 Poly(acrylonitrile), 18 2.2.3 Poly(vinylidene fluoride) 19 2.3 電纺絲 19 2.3.1 電紡絲的微觀結構形態 20 2.3.2 電紡絲應用於固態電解質 21 2.4 鋰金屬負極與電解質的界面 22 2.5 自由基聚合反應 24 第三章 實驗 26 3.1 實驗藥品與材料 26 3.2 實驗儀器與設備 27 3.3 樣品製備 28 3.3.1 PEO-based預聚體溶液 28 3.3.2 滴塗法製備固態高分子電解質主體 29 3.3.3 高分子電紡纖維膜的製備 29 3.3.3 滴塗法固態電解質界面的改善與電紡法固態電解質的製備 30 3.3.4 磷酸鋰鐵正極的製備 32 3.3.5 鈕扣型電池的組裝 32 3.4 鑑定與分析 33 3.4.1 掃描式電子顯微鏡 33 3.4.2 孔隙度測試 33 3.4.3 熱重分析儀 34 3.4.4 拉力測試 34 3.5 電化學測試 35 3.5.1 電化學阻抗頻譜法 35 3.5.2 離子傳導度測量 36 3.5.3 線性掃描伏安法 37 3.5.4 鋰離子遷移數之量測 37 3.5.5 電池效能測試 38 3.5.6 電池循環壽命測試 38 3.5.7 對稱鋰金屬時效穩定性 39 3.5.8 對稱鋰金屬循環充放測試 39 第四章 結果與討論 40 4.1 不同製備方法的固態電解質分析 40 4.1.1 SEM表面分析 40 4.1.2 SEM截面分析 42 4.1.2 離子傳導度分析 44 4.1.3 線性掃描伏安法的電化學穩定性分析 46 4.1.4 鋰離子遷移數分析 48 4.1.5 對稱鋰金屬時效穩定性分析 50 4.1.6 對稱鋰金屬循環充放電測試 52 4.1.7 鋰金屬電池充放電效能測試 54 4.1.8 鋰金屬電池循環充放電測試 56 4.2 不同材料的電紡薄膜製備出PEO-based固態電解質之分析 59 4.2.1 SEM表面分析 59 4.2.2 SEM截面分析 61 4.2.3 孔隙度分析 63 4.2.4 熱重分析 63 4.2.5 拉力測試 65 4.2.6 離子傳導度分析 66 4.2.7 線性掃描伏安法的電化學穩定性分析 67 4.2.8 鋰離子遷移數分析 69 4.2.9 對稱鋰金屬時效穩定性分析 71 4.2.10 對稱鋰金屬循環充放電測試 74 4.2.11 鋰金屬電池充放電效能測試 76 4.2.12 鋰金屬電池循環充放電測試 78 4.3 PEO/PVDF電紡薄膜製備出PEO-based固態電解質之分析 81 4.3.1 SEM表面分析 81 4.3.2 SEM截面分析 82 4.3.3 孔隙度分析 83 4.3.4 熱重分析 84 4.3.5 拉力測試 85 4.3.6 離子傳導度分析 87 4.3.7 線性掃描伏安法的電化學穩定性分析 88 4.3.8 鋰離子遷移數分析 90 4.3.9 對稱鋰金屬時效穩定性分析 92 4.3.10 對稱鋰金屬循環充放電測試 95 4.3.11 鋰金屬電池充放電效能測試 96 4.3.12 鋰金屬電池循環充放電測試 99 第五章 結論 101 5.1 不同製備方法的固態電解質分析 101 5.2 不同材料的電紡薄膜製備之PEO-based固態電解質的分析 102 5.3 PEO/PVDF電紡薄膜製備之PEO-based固態電解質的分析 102 第六章 參考文獻 103

    1. Issues and challenges facing rechargeable lithium batteries. MATERIALS FOR SUSTAINABLE ENERGY 414, 9 (2010).
    2. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nature Nanotech 12, 194–206 (2017).
    3. Whittingham, M. S. History, Evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012).
    4. Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat Energy 1, 16114 (2016).
    5. Ozawa, K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system. Solid State Ionics 69, 212–221 (1994).
    6. Costa, C. M., Lee, Y.-H., Kim, J.-H., Lee, S.-Y. & Lanceros-Méndez, S. Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes. Energy Storage Materials 22, 346–375 (2019).
    7. John B. Goodenough, Héctor D & Michelle V. Buchanan. Basic research needs for electrical energy storage.pdf. Report of the Basic Energy Sciences Workshop for Electrical Energy Storage (2007).
    8. Tsutomu Ohzuku & Atsushi Ueda. Solid‐State Redox reactions of LiCoO2 (R3m) for 4 volt secondary lithium cells. J. Electrochem. Soc. 141, 2972–2977 (1994).
    9. M.G.S.R.THOMAS, P.G.BRUCE & J.B. GOODENOUGH. Thomas 1985 Lithium mobility in the layered oxide Li1−xCoO2.pdf. Journals & Books 17, 13–19 (1985).
    10. Julien, C., Mauger, A., Zaghib, K. & Groult, H. Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132–154 (2014).
    11. Chen, Z. et al. Hierarchical porous LiNi1/3Co1/3Mn1/3O2 nano-/micro spherical cathode material: minimized cation mixing and improved Li+ mobility for enhanced electrochemical performance. Sci Rep 6, 25771 (2016).
    12. Lee, S. W. et al. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nature Nanotech 5, 531–537 (2010).
    13. Wang, A., Kadam, S., Li, H., Shi, S. & Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput Mater 4, 15 (2018).
    14. Chou, S.-L., Pan, Y., Wang, J.-Z., Liu, H.-K. & Dou, S.-X. Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 16, 20347–20359 (2014).
    15. Li, J., Christensen, L., Obrovac, M. N., Hewitt, K. C. & Dahn, J. R. Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder. J. Electrochem. Soc. 155, A234 (2008).
    16. Loeffler, N., Kopel, T., Kim, G.-T. & Passerini, S. Polyurethane binder for aqueous processing of Li-ion battery electrodes. J. Electrochem. Soc. 162, A2692–A2698 (2015).
    17. Loeffler, N. et al. Performance of LiNi1/3Mn1/3Co1/3O2/graphite batteries based on aqueous binder. Journal of Power Sources 248, 915–922 (2014).
    18. Tran, B. et al. Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode. Electrochimica Acta 88, 536–542 (2013).
    19. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).
    20. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater 2, 16103 (2017).
    21. Chen, R., Qu, W., Guo, X., Li, L. & Wu, F. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz. 3, 487–516 (2016).
    22. Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: A review. Chem. Mater. 15, 3974–3990 (2003).
    23. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).
    24. Zhang, H. et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017).
    25. Sun, C., Liu, J., Gong, Y., Wilkinson, D. P. & Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017).
    26. Golodnitsky, D., Strauss, E., Peled, E. & Greenbaum, S. Review—on order and disorder in polymer electrolytes. J. Electrochem. Soc. 162, A2551–A2566 (2015).
    27. Xue, Z., He, D. & Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015).
    28. Zhaoxiang Wang et al. Competition between the plasticizer and polymer on associating with Li+ ions in polyacrylonitrile‐based electrolytes.pdf. J. Electrochem. Soc 144, (1997).
    29. Groce, F. et al. Synthesis and characterization of highly conducting gel electrolytes. Electrochimica Acta 39, 2187–2194 (1994).
    30. Croce, F. & Scrosati, B. Interfacial phenomena in polymer-electrolyte cells: lithium passivation and cycleability. Journal of Power Sources 43, 9–19 (1993).
    31. Liu, X. et al. An interpenetrating network poly(diethylene glycol carbonate)-based polymer electrolyte for solid state lithium batteries. J. Mater. Chem. A 5, 11124–11130 (2017).
    32. Choe, H. S., Giaccai, J., Alamgir, M. & Abraham, K. M. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes. Electrochimica Acta 40, 2289–2293 (1995).
    33. Li, Y., Li, Q. & Tan, Z. A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries. Journal of Power Sources 443, 227262 (2019).
    34. Buchko, C. J., Chen, L. C., Shen, Y. & Martin, D. C. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40, 7397–7407 (1999).
    35. Bae, J. et al. A 3D Nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. 130, 2118–2122 (2018).
    36. Choudhury, S. et al. Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat Commun 10, 4398 (2019).
    37. 辜佩儀 & 張豐志. 合成雙親性團聯聚合物並置被蜂窩狀多孔性薄膜. (2006).
    38. Li, W. et al. Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery. European Polymer Journal 67, 365–372 (2015).
    39. Dornbusch, D. A., Hilton, R., Gordon, M. J. & Suppes, G. J. Effects of sonication on EIS results for zinc alkaline batteries. ECS Electrochemistry Letters 2, A89–A92 (2013).
    40. Porcarelli, L., Gerbaldi, C., Bella, F. & Nair, J. R. Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries. Sci Rep 6, 19892 (2016).
    41. Wang, H. et al. A composite polymer electrolyte protect layer between lithium and water stable ceramics for aqueous lithium-air batteries. J. Electrochem. Soc. 160, A728–A733 (2013).
    42. Kříž, J. et al. Nature and dynamics of lithium ion coordination in oligo(ethylene glycol) dimethacrylate-solvent systems: NMR, Raman, and Quantum mechanical study. J. Phys. Chem. A 103, 8505–8515 (1999).
    43. Raghavan, P. et al. Electrospun polymer nanofibers: The booming cutting edge technology. Reactive and Functional Polymers 72, 915–930 (2012).
    44. Wang, X., Hao, X., Hengjing, Z., Xia, X. & Tu, J. 3D ultraviolet polymerized electrolyte based on PEO modified PVDF-HFP electrospun membrane for high-performance lithium-sulfur batteries. Electrochimica Acta 329, 135108 (2020).

    下載圖示 校內:2025-08-25公開
    校外:2025-08-25公開
    QR CODE