簡易檢索 / 詳目顯示

研究生: 江彥儒
Jiang, Yan-Ru
論文名稱: 聲波與彈性波超穎介面之分析探討
Acoustic and elastic metasurface:Formulation and numerical simulations
指導教授: 陳東陽
Chen, Tung-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 超穎介面廣義司乃耳定律相位波前
外文關鍵詞: metasurfaces, phase, wave front
相關次數: 點閱:97下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來不少學者投入超材料設計與應用之相關研究,其概念透過共振及等效關係可以達到抗震的效果,然而,超材料在真實應用上,材料空間及計算過於龐大且複雜,隨著科技的進步,近幾年興起來一項新穎的超材料研究-超穎介面(metasurfaces),透過特殊單元結構設計及週期性排列方式,不同於超材料,超穎介面僅利用微小尺度的介面結構即可使波傳有轉向的現象,本論文主要為探討超穎介面在聲波及彈性波領域設計上的差異,首先介紹廣義司乃耳定律以了解波傳在超穎介面內部傳遞時的依據,再來介紹聲波超穎介面及彈性波超穎介面的設計,前者是利用多種材料;後者則利用單一材料但不同比例設計,並藉由更改介面及材料參數來探討其對波傳結果的影響,並在後續利用聲波超穎介面設計的方式來設計新型彈性超穎介面,藉由數值模擬與數學推導,觀察並統整超穎介面各參數的改動對波傳結果的影響。

    With the advancement of science and technology, a novel metamaterial has emerged in recent years known as metasurfaces. It uses designed unit structure and periodic arrangement. Unlike metamaterials, metasurfaces only use tiny scales. The interface structure can make the wave propagation tunable. In this paper, in order to design elastic metasurfaces with wave transmission mechanism, introducing the generalized Snell’s law to understand the internal guiding mechanism of the metasurfaces, then introducing the acoustic metasurfaces. In the design, compared the wave propagation results by adjusting the parameters in the interface, then introduced the design of the elastic wave metasurfaces, and comparing the possibility of the design and the change of parameters of the acoustic and the elastic metasurfaces. Finally, using the acoustic metasurfaces design to simulate the elastic metasurfaces, then discuss the difficulties of the new metasurfaces design.

    中文摘要 i Abstract iii 致謝 vii 目錄 ix 圖目錄 xi 表目錄 xv 第一章 緒論 1 1.1文獻回顧 1 1.2研究動機 3 1.3論文簡介 3 第二章 波的折射 5 2.1費馬原理(Fermat’s principle) 5 2.2惠更斯-司乃耳原理(Huygens-Fresnel principle) 9 2.3廣義司乃耳定律(Generalized Snell’s law) 12 第三章 超穎介面全域模擬 17 3.1聲波超穎介面 17 3.1.1聲波簡介 17 3.1.2聲波方程式 18 3.1.3聲波超穎介面設計構成 19 3.1.4全域模擬 22 3.1.5聲波超穎介面總結 38 3.2彈性波超穎介面 39 3.2.1彈性波簡介 39 3.2.2彈性波動方程式 41 3.2.3數學推導 44 3.2.4彈性波超穎介面設計構成 48 3.2.5全域模擬 51 3.2.6彈性超穎介面模擬總結 61 第四章 聲波與彈性波超穎介面分析與探討 63 4.1聲波與彈性波超穎介面探討 63 4.1.1波傳性質 63 4.1.2數學公式推導 67 4.1.3單元結構設計出發點 72 4.1.4超穎介面高度的調整 73 4.2彈性超穎介面之設計 74 4.2.1設計理念 74 4.2.2全域模擬 77 4.2.3小節 80 第五章 結論與未來展望 81 5.1結論 81 5.2未來展望 82 參考文獻 85 附錄A:聲學超穎介面之應用 89 附錄B:材料折射率表 91 附錄C:COMSOL建模 92

    Achenbach, J., Wave Propagation in Elastic Solids, North-Holland Pub. Co., 1973.
    Bogatin, E., Signal Integrity-Simplified, Prentice Hall, 2004.
    Bolt, B.A., Earthquakes, W.H. Freeman, 1993.
    Cao, L., Z. Yang and Y. Xu, Steering elastic SH waves in an anomalous way by metasurface, Journal of Sound and Vibration 418: 1-14, 2018.
    Chen, T., Weng, C.-N. and Chen, J.-S., Cloak for curvilinearly anisotropic media in conduction, Journal Applied Physics, 93(11): 114103, 2008.
    Graff, K. F., Wave Motion in Elastic Solids, Dover Publications, 1975.
    Heaviside, O., Electromagnetic induction and its propagation, The Electrician 1886.
    Hecht, E., Optics, Pearson Education, 2016.
    Huygens, C., Treatise on Light, Tredition, 2011.
    Jiang, Z. H., Yun, S., Lin, L., Bossard, J. A., Werner, D. H. and Mayer, T. S., Tailoring dispersion for broadband low-loss optical metamaterials using deep-subwavelength inclusions, Scientific Reports: 3(1571), 2013.
    Kennelly, A., Impedance, American Institute of Electrical Engineers, 1893.
    Kinsler, L. E., A. R. Frey, A. B. Coppens and J. V. Sanders., Fundamentals of Acoustics, Wiley, 1999
    Leonhardt, U., Optical conformal mapping, Science 312(5781): 1777-1780, 2006.
    Li, J., Fok, L., Yin, X., Bartal, G. and Zhang, X., Experimental demonstration of an acoustic magnifying hyperlens, Nature Materials, 8(12): 931, 2009.
    Lu, M.-H., Feng, L. and Chen, Y.-F., Phononic crystals and acoustic metamaterials, Materials Today, 12(12): 34-42, 2009.
    Mei, J. and Y. Wu, Controllable transmission and total reflection through an impedance-matched acoustic metasurface, New Journal of Physics 16(12): 123007, 2014.
    Monticone, F., Estakhri, N. M., and Alù, A., Full control of nanoscale optical transmission with a composite metascreen, Physical Review Letters, 110: 203903, 2013.
    Pendry, J. B., A. Holden, W. Stewart and I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Physical Review Letters 76(25): 4773, 1996.
    Pendry, J. B., A. J. Holden, D. J. Robbins and W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Transactions on Microwave Theory and Techniques 47(11): 2075-2084, 1999.
    Pendry, J. B., Negative refraction makes a perfect lens, Physical Review Letters 85(18): 3966, 2000.
    Pendry, J. B., Schuring, D. and Smith, D. R., Controlling electromagnetic fields, Science 312(5781): 1780-1782, 2006.
    Pfeiffer, C. and Grbic, A., Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Physical Review Letters, 110:197401, 2013.
    Ribenboim, P., Paulo Fermat’s Last Theorem for Amateurs, New York: Springer-Verlag 1999
    Richard S. C. Cobbold, Foundations of Biomedical Ultrasound, New York: Oxford University Press, 2007.
    Sadd, M. H., Elasticity: Theory, Applications, and Numerics, Elsevier Butterworth Heinemann, 2005.
    Shelby, R. A., Smith D. R., and Schultz, S., Experimental verification of a negative index of refraction, Science 292(5514): 77-79, 2001.
    Shen, X., C.-T. Sun, M. V. Barnhart and G. Huang, Elastic wave manipulation by using a phase-controlling meta-layer, Journal of Applied Physics 123(9): 091708, 2018.
    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. and Schultz, S., Composite medium with simultaneously negative permeability and permittivity, Physical Review Letters 84(18): 4184-4187, 2000.
    Su, X. and A. N. Norris, Focusing, refraction, and asymmetric transmission of elastic waves in solid metamaterials with aligned parallel gaps, The Journal of the Acoustical Society of America 139(6): 3386-3394, 2016.
    Su, X., Z. Lu and A. N. Norris, Elastic metasurfaces for splitting SV-and P-waves in elastic solids, Journal of Applied Physics 123(9): 091701, 2018.
    Veselago, V. G., The electrodynamics of substances with simultaneously negative values of and μ, Soviet Physics Uspekhi, 10(4): 509, 1968.
    Wang, Z., Y. Sun, L. Han and D. Liu, General laws of reflection and refraction for subwavelength phase grating, arXiv preprint arXiv: 1312.3855, 2013.
    Wu, Y., Lai, Y. and Zhang, Z.-Q., Effective medium theory for elastic metamaterials in two dimensions, Physical Review B, 76(20): 205313, 2007.
    Xu, T., C. Du, C. Wang, and X. Luo, Subwavelength imaging by the metallic slab lens with nanoslits, 2007
    Young, E. C., The Penguin Dictionary of Electronics, 1988.
    Yu, N., Genevet, P., Kats, M. A., Aieta, F., Tetienne, J.-P., Capasso, F. and Gaburro, Z., Light propagation with phase discontinuities: generalized laws of reflection and refraction, Science 334(6054): 333-337, 2011.
    Zigoneanu, L., Popa, B.-I. and Cummer, S. A., Three-dimensional broadband omnidirectional acoustic ground cloak, Nature materials, 13(4): 352, 2014.

    呂孟學,具波傳導向機制之彈性超穎介面分析與設計,國立成功大學土木所碩士論文,2018。

    無法下載圖示 校內:2022-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE