| 研究生: |
陳季昀 Chen, Chi-Yun |
|---|---|
| 論文名稱: |
全固態電池中Li6.6La3Zr1.6Ta0.4O12固態電解質與Li負極之接合製程 The Assembly of Li Anode on Li6.6La3Zr1.6Ta0.4O12-Solid-Electrolyte in All-Solid-State Batteries |
| 指導教授: |
林士剛
Lin, Shih-Kang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 全固態電池 、固態電解質 、石榴石結構 、鋰金屬負極 、交流組抗 |
| 外文關鍵詞: | All-solid-state batteries, Solid electrolyte, LLZO, Li anode, Impedance analysis |
| 相關次數: | 點閱:126 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰電池的應用已從小電力可攜式產品擴展到運輸工具及中大型儲能系統,其中,全固態電池(All Solid-State Batteries, ASSB)因其高安全性與高能量密度的特性,已不約而同地被規劃在世界上重要電化學儲能科技白皮書上,因此,全固態電池已是目前世界各國以及各大車廠極力開發的電動車元件。然而,目前全固態電池的性能仍無法與現今主流具液態電解質之鋰電池相比,在全固態電池眾多極待發展的課題中,降低電池阻抗為最關鍵的核心技術之一。本研究著重探討石榴石結構固態電解質,以鋰金屬為負極,在不同溫度及壓力條件下,組裝成對稱電池後分析其電化學阻抗,以及鋰的溶解和析出的行為。由化學阻抗之等效電路分析,我們嘗試去解構在不同的溫度及壓力條件對界面貼合度產生的影響。然而在本研究中,組裝溫度的提升以及增加組裝時的堆疊壓力與界面的阻抗降低程度不完全正相關,與預期結果不同。但是從這也可以側面證實LLZO與Li電極表面的乾淨程度對界面貼合度產生的影響,若表面沒有汙染物的產生或是殘留,那麼界面貼合度也會有所提升,達到降低界面阻抗的效果。
Lithium-ion batteries has been extensively applied ranging from portable electronic devices to transportation and medium to large scale energy storage. Among the existing technologies, all solid-state batteries (ASSBs) possess the merits of high safety and high energy density. Developing ASSB has been proposed in various important roadmap for electrochemical energy storage. Thus, major vehicle manufactures in the world have devoted to developing ASSBs as the key component in electric vehicles (EVs). However, the performance of current ASSBs is not competitive compared with the Li-ion batteries using conventional liquid electrolytes on the market. Among the emerging issues of ASSBs, lowering their internal impedance is the key one. In this research, we studied the effects of different assembly temperatures and stacking pressures on the interfacial resistance between Li anode and LLZO solid electrolyte. We measured the electrochemical impedance spectra and the constant direct current behavior. Hence, we tried to deconstruct the extent of intimate contact of the interface and the deposition and dissolution behavior of lithium. Despite that we didn’t prove that rising the assembly temperature and the stacking pressure always reduced the interfacial resistance, we did verify the importance of the surface conditioning. The better the preconditioning such as polish and heat treatment, the smaller the interfacial resistance. It was the contamination layer produced or remained at the interface that mattered.
[1] Changzhi Sun, Yadong Ruan, Wenping Zha, Wenwen Li, Mingli Cai and Zhaoyin Wen, "Recent advances in anodic interface engineering for solid-state lithium-metal batteries." Materials Horizons 7.7: 1667-1696, 2020.
[2] Asma Sharafi, Eric Kazyak, Andrew L. Davis, Seungho Yu, Travis Thompson, Donald J. Siegel, Neil P. Dasgupta, and Jeff Sakamoto "Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12." Chemistry of Materials 29.18: 7961-7968, 2017.
[3] Asma Sharafi, Seungho Yu, Michael Naguib, Marcus Lee, Cheng Ma, Harry M. Meyer, Jagjit Nanda, Maiofang Chi, Donald J. Siegel and Jeff Sakamoto, "Impact of air exposure and surface chemistry on Li–Li 7 La 3 Zr 2 O 12 interfacial resistance." Journal of Materials Chemistry A 5.26: 13475-13487, 2017.
[4] Jiangyan Wang, Hansen Wang, Jin Xie, Ankun Yang, Allen Pei, Chun-Lan Wu, Feifei Shi, Yayuan Liu, Dingchang Lin, Yongji Gong, Yi Cui, "Fundamental study on the wetting property of liquid lithium." Energy Storage Materials 14: 345-350, 2018.
[5] Cheng Ma, Yongqiang Cheng, Kuibo Yin, Jian Luo, Asma Sharafi, Jeff Sakamoto, Juchuan Li, Karren L. More, Nancy J. Dudney, and Miaofang Chi, "Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy." Nano letters 16.11: 7030-7036, 2016.
[6] Thorben Krauskopf, Hannah Hartmann, Wolfgang G. Zeier, and Jürgen Janek "Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6. 25Al0. 25La3Zr2O12." ACS applied materials & interfaces 11.15: 14463-14477, 2019.
[7] Thorben Krauskopf, Boris Mogwitz, Carolin Rosenbach, Wolfgang G. Zeier, Jürgen Janek, "Diffusion limitation of lithium metal and Li–Mg alloy anodes on LLZO type solid electrolytes as a function of temperature and pressure." Advanced Energy Materials 9.44: 1902568, 2019.
[8] Pelton, A. D. "The Au− Li (Gold-Lithium) system." Bulletin of Alloy Phase Diagrams 7.3: 228-231, 1986.
[9] Chih-Long Tsai, Vladimir Roddatis, C. Vinod Chandran, Qianli Ma, Sven Uhlenbruck, Martin Bram, Paul Heitjans, and Olivier Guillon, "Li7La3Zr2O12 interface modification for Li dendrite prevention." ACS applied materials & interfaces 8.16: 10617-10626, 2016.
[10] Eric Kazyak, Regina Garcia-Mendez, William S. LePage, Asma Sharafi, Andrew L. Davis, Adrian J. Sanchez, Kuan-Hung Chen, Catherine Haslam, Jeff Sakamoto, Neil P. Dasgupta, "Li penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility." Matter 2.4: 1025-1048, 2020.
[11] Marlena Uitz, Viktor Epp, Patrick Bottke and Martin Wilkening, "Ion dynamics in solid electrolytes for lithium batteries." Journal of Electroceramics 38.2: 142-156, 2017.
[12] John Christopher Bachman, Sokseiha Muy, Alexis Grimaud, Hao-Hsun Chang, Nir Pour, Simon F. Lux, Odysseas Paschos, Filippo Maglia, Saskia Lupart, Peter Lamp, Livia Giordano, and Yang Shao-Horn, "Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction." Chemical reviews 116.1: 140-162, 2016.
[13] Teng, Shiang, Jiajia Tan, and Ashutosh Tiwari, "Current Opinion in Solid State and Materials" Science 18.1: 29-38, 2014.
[14] Lincoln J. Miara, William Davidson Richards, Yan E. Wang, and Gerbrand Ceder, "First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets." Chemistry of Materials 27.11: 4040-4047, 2015.
[15] http://lacey.se/science/eis/constant-phase-element/
[16] Sharafi, Asma, Harry M. Meyer, Jagjit Nanda, Jeff Wolfenstine, and Jeff Sakamoto. "Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density." Journal of Power Sources 302 ,135-139, 2016.
[17] Satter, Ruth. "Effects of light-dark cycles." Science, 1226-1226, 1976.
[18] Whittingham, M. S. U.S. Patent US 4009052 A, 1977.
[19] Tarascon, J. M., and M. Armand. "Issues and challenges facing rechargeable lithium batteries Nature 414." , 2001.
[20] Justin G. Connell, Till Fuchs, Hannah Hartmann, Thorben Krauskopf, Yisi Zhu, Joachim Sann, Regina Garcia-Mendez, Jeff Sakamoto, Sanja Tepavcevic, and Jürgen Janek, "Kinetic versus Thermodynamic Stability of LLZO in Contact with Lithium Metal." Chemistry of Materials 32.23 (2020): 10207-10215.
[21] Alsharif, Nour. A Study of High-Performance Solid-State Electrolytes for Li-Ion Battery. Diss. The Catholic University of America, 2021.