簡易檢索 / 詳目顯示

研究生: 張育銘
Chang, Yu-Ming
論文名稱: 螺旋板式熱交換器應用於SOFC系統冷端空氣預熱之熱傳及熱效率分析
Heat Transfer and Efficiency Analysis of Air Preheating Process for SOFC System with Spiral Plate Heat Exchanger
指導教授: 陳朝光
Chen, Cha'o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 91
中文關鍵詞: 螺旋板式熱交換器計算流體力學熱傳分析固態氧化物燃料電池系統前端空氣預熱
外文關鍵詞: Spiral Plate Heat Exchanger, Computational fluid dynamics, Heat transfer analysis, Air preheating process for Solid Oxide Fuel system
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對使用螺旋板式熱交換器應用在固態氧化物燃料電池系統中前端空氣預熱,並分別探討在不同燃燒尾氣組成比例、不同入口雷諾數情況下的熱傳分析。由於螺旋板式熱交換器具有高密集度、能自清潔、理論熱損失極小的優點,同時固態氧化物燃料電池系統中為了提升系統的整體效率,通常會將反應完或燃燒後的氣體回收並且應用於前端燃料及氣體進行預熱,因此本文將討論螺旋板式熱交換器應用於固態氧化物燃料電池系統前端空氣預熱的熱傳現象。
    根據上述目的,在本研究中考慮二維螺旋板式熱交換器模型,其軌跡可以由阿基米德螺旋線表示,並探討在氣體比例效應與流速效應下,螺旋板式熱交換器中的溫度、對流熱傳係數、紐塞數、換熱效能等差異。從數值模擬結果得知水蒸氣的比例是影響熱交換器效能的重要參數。其中,當雷諾數等於1000,水蒸氣含量最多的Case1換熱效能會比含量最少的Case3高出約4%,同時隨著入口雷諾數的增加,水蒸氣含量較高的Case1與含量較少的Case3間空氣出口溫度差也會逐漸提升,當入口雷諾數從250提升至1000時,空氣出口溫差也從7K提升至37K。
    另一方面,當流體雷諾數增加,熱交換器的溫度及熱傳分布也會隨之改變。從結果可知,熱交換器冷流中間區域與內外半圈的熱傳現象會隨著雷諾數增加而差距會越來越大,由本文中Case1結果可知,在低雷諾數時中間溫差約330K,但在高雷諾數時中間溫差會提升至702K。而隨著雷諾數的增加,入口附近的對流熱傳係數反而會降低,出口附近的對流熱傳系數會先提升後降低,但對冷流總體而言仍然是提升的,雷諾數250與雷諾數1000相比,局部對流熱傳係數最大提升約36.5%,局部紐賽數最大提升約56.7%。在熱流中,隨著雷諾數的增加,因為質量流率的增加出口溫度反而會提升,在低雷諾數時出口溫度為1100K,但在高雷諾數時的出口溫度為1131K。隨著雷諾數的增加,局部對流熱傳係數與局部紐賽數皆會增加,雷諾數250與雷諾數1000相比,局部對流熱傳係數增加的最大幅度約為26.6%,局部紐賽數增加約為10.9%。
    根據本研究的分析結果可以發現,水蒸氣比例與流體雷諾數會影響熱交換器的溫度與熱傳能力,此結果能夠提供未來固態氧化物燃料電池系統設計過程中作為參考數據,並且減少產業進行系統設計與實驗之成本。

    This research investigates the heat transfer of a Spiral Plate Heat Exchanger (SPHE) applied to air preheating process for Solid Oxide Fuel Cells (SOFC) system by numerical simulation, and discusses the analysis under different compositions of afterburner exhaust and different inlet Reynold number. Owing to the advantages of SPHE such as high density, self-cleaning capability, and minimal theoretical heat loss compared to other types of heat exchangers, it has the potential to reduce waste heat generation and improve overall heat transfer efficiency. At the same time, to enhance the overall efficiency in SOFC systems, it is common practice to recycle the reacted or afterburned gases back to the front end for preheating. Therefore, this research discusses the application of a SPHE for air preheating in SOFC systems.
    To achieve the above objectives, a two-dimensional SPHE model is considered in the research, with its trajectory can be represented by an Archimedean spiral. Numerical analysis of computational fluid dynamics (CFD) are applied to discretize the governing equations by using the Finite Volume Method (FVM), and the influence of different compositions exhaust and different inlet Reynolds numbers on air preheating is investigated, such as temperature distribution, convective heat transfer. In order to get accuracy simulation, using the condition of air preheating for SOFC system and investigating the temperature, convective heat transfer coefficient, Nusselt number and effectiveness of SPHE. When the inlet Reynolds number is equal to 1000, the heat transfer efficiency of Case1 with the most water vapor content is about 4% higher than that of Case3 with the least water vapor content. The air outlet temperature difference between Case3 will also gradually increase. When the inlet Reynolds number increases from 250 to 1000, the air outlet temperature difference also increases from 7K to 37K.
    On the other hand, as the inlet Reynolds number of the fluid increases, the temperature and heat transfer distribution of the heat exchanger will also change accordingly. It also can be observed that the difference of the heat transfer between the middle area of the cold flow of the heat exchanger and the inner and outer half circles will increase as the inlet Reynolds number increases. From the results of Case1 in this research, the temperature difference is about 330K at low inlet Reynolds numbers. But at high inlet Reynolds number, the temperature difference will increase to 702K. As the inlet Reynolds number increases, the convective heat transfer coefficient near the inlet will decrease, but it will still increase for the cold flow overall. Compared with the inlet Reynolds number 1000, the convective heat transfer coefficient increases by about 33%. The Nusselt number increased by about 45%. In hot flow, as the inlet Reynolds number increases, the outlet temperature will increase due to the increase in mass flow rate. The outlet temperature is 1100K at low inlet Reynolds number, but 1131K at high inlet Reynolds number. As the inlet Reynolds number increases, both the convective heat transfer coefficient and the Nusselt number will increase. Compared with the inlet Reynolds number 250 and the inlet Reynolds number 1000, the convective heat transfer coefficient increases by about 19%, and the Newey number increases by about 20%.
    According to the analysis results of this research, it can be concluded that the steam ratio and fluid inlet Reynolds number affect the temperature and heat transfer capability of the heat exchanger. The result can provide reference data for future design processes of solid oxide fuel cell systems, and help reduce industrial cost of system design and experimentation.

    摘要 I Extended Abstract III 致謝 VIII 目錄 IX 表目錄 XII 圖目錄 XIII 符號說明 XVII 第一章 緒論 1 1-1 研究動機與背景 1 1-2 文獻回顧 3 1-2-1 螺旋板式熱交換器之相關文獻探討 3 1-2-2 SOFC系統之架構及廢熱回收之相關文獻探討 6 1-3 研究目的 9 1-4 論文架構 9 第二章 螺旋板式熱交換器之模型與熱傳理論 10 2-1 模型建構 10 2-2 假設條件 14 2-3 統御方程式(Governing Equation) 14 2-4 邊界條件(Boundary Condition) 15 2-5 熱流場之特徵與無因次參數 16 第三章 數值方法 21 3-1 概述 21 3-2 數值求解方法 22 3-3 離散化 24 3-4 壓力修正式 27 3-5 迭代計算 28 3-6 收斂標準與殘值 29 第四章 結果討論與分析 31 4-1 網格獨立性測試與數值驗證 31 4-2 流體比例效應對於熱交換器性能效益分析 34 4-3 流體組成比例效應與流速效應對於流道中央溫度分布分析 39 4-3-1 流體組成比例效應對於流道溫度的影響 39 4-3-2 流體入口雷諾數對於流道溫度的影響 45 4-4 流體組成比例效應與流速效應對於對流熱傳係數的影響 53 4-4-1 流體組成比例效應對於對流熱傳係數的影響 53 4-4-2 流體入口雷諾數對於對流熱傳係數的影響 60 4-5 流體組成比例效應與流速效應對於紐賽數的影響 68 4-5-1 流體組成比例效應對於紐塞數的影響 68 4-5-2 流體入口雷諾數對於紐塞數的影響 75 4-6 流體組成比例與入口雷諾數對於熱交換器熱效能的影響 83 第五章 結論與未來展望 85 5-1 結論 85 5-2 未來展望 87 參考文獻 88

    [1] C. Balaji, B. Srinivasan, S. Gedupudi, “Chapter 7 - Heat exchangers,” Heat Transfer Engineering, pp. 199-231, 2021.
    [2] Choudhury, H. Chandra, A. Arora, “Application of solid oxide fuel cell technology for power generation—A review,” Renewable and Sustainable Energy Reviews, Vol. 20, pp. 430-442, 2013.
    [3] A. H. S. Shirazi, M. Ghodrat, M. Behnia, “Fluid Friction Effects on the Thermodynamic Performance of Spiral Plate Heat Exchangers,” J. Thermophys. Heat Transf. Vol. 36, No. 3, 2022.
    [4] B. Wilhelmsson, “Consider spiral heat exchangers for fouling application,” Hydrocarb. Process, Vol. 84, No. 7, pp. 81-83, 2005.
    [5] M.J. Targett, W.B. Retallick, S.W. Churchill, “Solutions in closed form for a double-spiral heat exchanger,” Ind. Eng. Chem. Res., Vol. 31, No. 3, pp. 658-669, 1992.
    [6] L.C. Burmeister, “Effectiveness of a spiral-plate heat exchanger with equal capacitance rates,” ASME J. Heat Transf., Vol. 128, No. 3, pp. 295-301, 2006.
    [7] J. Khorshidi, S. Heidari, “Design and construction of a spiral heat exchanger,” Adv. Chem. Eng. Sci., Vol. 6, pp. 201-208, 2016.
    [8] M.W. Egner, L.C. Burmeister, “Heat transfer for laminar flow in spiral ducts of rectangular cross section,” ASME J. Heat Transf., Vol. 127, No. 3, pp. 352-356, 2005.
    [9] B. Cervenka, M. Holubcik, J. Drga, M. Malcho, “Modular Spiral Heat Exchanger Thermal Modelling,” Applied Sciences, Vol. 12, No.12, 5805, 2022.
    [10] T.-H. Feng, C.-K. Chen, “Numerical investigation on thermal-hydraulic performance of a spiral plate heat exchanger,” Int. Commun. Heat Mass Transf, Vol. 134, Article 106057, 2022.

    [11] R. Rajavel, K. Saravanan, “Heat transfer studies on spiral-plate heat exchanger,” Therm. Sci., Vol. 12, No. 3, pp. 85–90, 2008.
    [12] R. Rajavel, “Experimental and numerical studies of a spiral-plate heat exchanger,” Therm. Sci., Vol. 18, No. 4, pp. 1355–1360, 2014.
    [13] M. Adamski, “Heat transfer correlations and NTU number for the longitudinal flow spiral recuperators,” Appl. Therm. Eng., Vol. 29, pp. 591-596, 2009.
    [14] D. K. Nguyen, J. K. San, “Effect of solid heat conduction on heat transfer performance of a spiral heat exchanger,” Appl. Therm. Eng., Vol. 76, pp. 400–409, 2015.
    [15] D. K. Nguyen, J. Y. San, “Decrement in heat transfer effectiveness due to solid heat conduction for a counter-current spiral heat exchanger,” Appl. Therm. Eng., Vol. 103, pp. 821–831, 2016.
    [16] D. K. Nguyen, J. Y. San, “Heat transfer and exergy analysis of a spiral heat exchanger,” Heat Transf. Eng., Vol. 37, No.12, pp. 1013–1026, 2016.
    [17] U. M. Milovančević, et al., “Thermoeconomic Analysis of Spiral Heat Exchanger with Constant Wall Temperature,” Thermal Science, Vol. 23, No. 1, pp. 401-410, 2019.
    [18] A. H. S. Shirazi, M. Ghodrat, M. Behnia, “Energy and exergy analysis of spiral turns in optimum design spiral plate heat exchangers,” Heat Transf., Vol.51, pp. 701-732, 2021.
    [19] S. Ramachandran, P. Kalaichelvi, S. Sundaram, “Heat transfer studies in a spiral plate heat exchanger for water–palm oil two phase system,” Braz. J. Chem. Eng., Vol. 25, No. 3, pp. 483–490, 2008.
    [20] S. Subramanian, M. Rangarajan, S. Ramachandran, “Studies of Heat Transfer for Water-Diesel Two-Phase System in a Spiral Heat Exchanger,” Chem. Biochem. Eng. Q., Vol. 25, No.2, pp. 198-201, 2011.
    [21] M. Bahiraei, A. A. Ahmadi, “Thermohydraulic performance analysis of a spiral heat exchanger operated with water-alumina nanofluid: Effects of geometry and adding nanoparticles,” Energy Convers. Manage., Vol. 170, pp. 62–72, 2018.
    [22] M. Bahiraei, H.K. Salmi, M.R. Safaei, “Effect of employing a new biological nanofluid containing functionalized graphene nanoplatelets on thermal and hydraulic characteristics of a spiral heat exchanger,” Energy Convers. Manage., Vol. 180, No. 15, pp. 72–82, 2019.
    [23] F. Jiang, X. Dong, G. Qi, P. Mao, J. Wang, X. Li, “Heat-transfer performance and pressure drop in a gas-solid circulating fluidized bed spiral-plate heat exchanger,” Appl. Therm. Eng., Vol. 171, Article 115091, 2020.
    [24] J. Hosseinpour, M. Sadeghi, A. Chitsaz, F. Ranjbar, M. A. Rosen, “Exergy assessment and optimization of a cogeneration system based on a solid oxide fuel cell integrated with a Stirling engine,” Energy Convers. Manag., Vol. 143, pp. 448-458, 2017.
    [25] 李宜庭, 固態氧化物燃料電池/史特林引擎混和動力系統性能分析, 國立成功大學機械工程學系碩士班論文, 2018.
    [26] M. Marefati, M. Mehrpooya, S. A. Mousavi, “Introducing an integrated SOFC, linear Fresnel solar field, Stirling engine and steam turbine combined cooling, heating and power process,” Int. J. Hydrog. Energy, Vol. 44, pp. 30256-30279, 2019.
    [27] R. Peters, R. Deja, L. Blum, J. Pennanen, J. Kiviaho, T. Hakala, “Analysis of solid oxide fuel cell system concepts with anode recycling,” Int. J. Hydro. Energy, Vol. 38, pp. 6809-6820, 2013.
    [28] T. Somekawa, K. Nakamura, T. Kushi, T. Kume, K. Fujita, H. Yakabe, “Examination of a high-efficiency solid oxide fuel cell system that reuses exhaust gas,” Appl. Therm. Eng., Vol. 114, pp. 1387-1392, 2017.
    [29] M. Moździerz, M. Chalusiak, S. Kimijima, J. Szmyd, G. Brus, “An afterburner-powered methane/steam reformer for a solid oxide fuel cells application,” Heat and Mass Transf., Vol. 54, pp. 2331–2341, 2018.
    [30] https://webbook.nist.gov/chemistry/.
    [31] A. J. Chorin, “Numerical solution of navier-stokes equations,” Math Compu, Vol.22, pp. 745–762, 1968.
    [32] W. Anderson, D. L. Bonhus, “An Implicit Upwind Algorithm for Computing Turbulent Flows on Unstructured Grids,” Compu Fluids, Vol.23, No.1, pp.1–21, 1994.
    [33] S. V. Patankar, D. B. Spalding, “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows,” Int. J. Heat and Mass Transf., Vol. 15, pp. 1787-1806, 1972.
    [34] C. M. Rhie, W. L. Chow, “Numerical Study of the Turbulent Flow Past an Airfoil with Trailing Edge Separation,” AIAA J., Vol.21, No.11, pp.1525–1532, 1983.

    下載圖示 校內:2025-08-31公開
    校外:2025-08-31公開
    QR CODE