簡易檢索 / 詳目顯示

研究生: 張簡才萬
Chang-Jian, Cai-Wan
論文名稱: 轉子-軸承系統之非線性運動 與混沌行為分析
Nonlinear Dynamic Analysis and Chaos of Rotor-Bearing Systems
指導教授: 陳朝光
Chen, Chao-Kuang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 196
中文關鍵詞: 碰摩故障混沌偶應力流體微極流體紊流流場Runge-Kutta多孔性擠壓油膜阻尼
外文關鍵詞: chaos, porous squeeze film damper, Runge-Kutta, turbulent flow, couple stress fluid, rub-impact, micropolar fluid
相關次數: 點閱:163下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究的主題為轉子-滑動軸承系統中碰摩故障現象分析、以偶應力流體為潤滑劑之軸承-轉子動態分析、以微極流體為潤滑劑之軸承-轉子動態分析、軸承-轉子系統在紊流流場之動態分析、多孔性擠壓油膜阻尼器支撐之油膜軸承-轉子動態分析,同時皆考慮比較接近實際物理系統的非線性支撐之撓性轉子,並且藉由Runge-Kutta法之數值模擬得到系統基本之動態軌跡,再進一步利用頻譜圖、龐卡來映射圖以及分岔圖分析系統的動態特性,最後再藉由李雅普諾夫指數之運算對系統是否進入混沌運動作更進一步的佐證。
    軸承中心與轉子中心在轉子質量偏心的不平衡力與非線性油膜力的作用下產生同步振動、分諧振、準週期振動與混沌振動等複雜性響應。經由不同轉速比下的數值模擬的結果我們也發現了在非線性因素作用下,軸承中心與軸頸中心的動態方程式是互相耦合,在大部分轉速比下,軸承中心與轉子中心運動軌跡呈現不規則混亂運動時。碰摩轉子系統之動態響應不論在長軸承或短軸承的假設下都具有相當豐富的非週期特性。系統運作初期出現低頻的現象,但是隨著碰摩的發展,會出現高頻分量的情形,顯示碰摩越來越嚴重,不論轉子中心或軸承中心的動態軌跡與頻譜圖都呈現相當紊亂與不規則的非週期振動情形。
    在偶應力潤滑劑之軸承-轉子動態分析方面,結果顯示隨著 值越大,代表偶應力流體的效應越強,軸承與轉子中心也相對的較穩定而且由分岔圖可看出, 值越大,分岔圖中的週期運動區域越大。在微極流體潤滑劑之軸承-轉子動態分析方面,在不同 下軸承中心與轉子中心的分岔圖, 表示為牛頓流體;而 愈大表示微極流體的的效應愈強。結果顯示隨著 的值愈大,不管軸承或轉子中心的運動軌跡並不會較穩定而是愈紊亂,也印證了雖然預期 的值愈大,負載愈大;但是其摩擦力亦相對增加,導致系統的振動愈來愈不穩定。在紊流潤滑油軸承-轉子動態分析方面,在不同轉速比下,軸承中心或轉子中心顯示相當豐富的動態特性,包括:週期、2T週期、3T週期、準週期與混沌運動等等的振動。在多孔性擠壓油膜阻尼器支撐之油膜軸承-轉子動態分析方面,軸承中心與轉子中心在不同轉速比下顯示週期、2T週期與混沌運動等等的情形。根據分析結果亦得知, 與 值越大,軸承與轉子中心的動態軌跡愈穩定,亦即非線性振動的區域相對減少,故可知多孔性擠壓油膜阻尼器的確有助於改善系統整體的穩定性。

    The dynamic analysis of the rotor-bearing system is studied under different cases of rub-impact rotor, couple stress fluid film bearing, micropolar fluid film bearing, turbulent lubrication flow and porous squeeze film damper with couple stress fluid in this paper under nonlinear suspension. The numerical analysis is carried out by using the Runge-Kutta method. Dynamic trajectories, power spectra, Poincaré Map, Bifurcation diagrams and Lyapunov exponent are applied to analyze the dynamic conditions.
    An observation of a nonlinearly supported model and the rub-impact between rotor and stator is needed for more precise analysis of rotor- bearing systems. The periodic, quasi-periodic, sub-harmonic and chaotic motion are demonstrated in this study. It is concluded that the trajectory of rotor centre and bearing centre have undesirable vibrations. According to the dynamic analysis of a rotor supported by two couple stress fluid film journal bearings with nonlinear suspension, it is found that periodic, quasi-periodic, sub-harmonic and chaotic motion are demonstrated in this study. The results also confirm that the stability of the system varies with the non-dimensional speed ratios, the non-dimensional unbalance parameters and the dimensionless parameter of . The result of the dynamic analysis of a rotor supported by two micropolar fluid film journal bearings with nonlinear suspension demonstrates that the stability of the system varies with the non-dimensional speed ratios, but doesn’t vary with the non-dimensional parameter N2. The dynamic analysis of a rotor supported by two turbulent model journal bearings with nonlinear suspension has found that the dynamic behaviors of the system include 3T-periodic, jump phenomena and chaotic motions. It is also found that more nonlinear dynamic behaviors occur under turbulent flow assumption than laminar flow model. A dynamic analysis of a flexible rotor supported by two porous squeeze couple stress fluid film journal bearings with nonlinear suspension has found that the stability of the system varies with the non-dimensional speed ratios, the non-dimensional parameter and the permeability .
    The modeling results thus obtained by using the method proposed in this paper can be employed to predict the stability of the rotor-bearing system and the undesirable behavior of the rotor and bearing center can be avoided. With the analysis of the dynamic behavior of these operating conditions, the theoretical and practical idea for controlling rotor-bearing systems can be more precise.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖目錄 X 符號說明 XVIII 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 第二章 研究非線性動態與混沌的研究方法 13 2-1 龐卡萊截面法 14 2-2 相空間重構 21 2-3 奇異吸子 23 2-4 李雅普諾夫指數 26 第三章 轉子-滑動軸承系統中碰摩故障現象分析 35 3-1 導論 35 3-2 非線性油膜力 36 3-2-1 雷諾方程式的建立 36 3-2-2半油膜短軸承內壓力分佈 43 3-2-3長軸承內壓力分佈 45 3-3 碰摩力分析 46 3-4 非線性支撐之碰摩轉子-油膜軸承系統 的建立 47 3-4-1運動方程式 47 3-4-2運動方程式無因次化 50 3-5數值模擬與討論 51 第四章 以偶應力流體為潤滑劑的轉子-軸承動態分析70 4-1 導論 70 4-2非線性偶應力潤滑劑油膜力 71 4-3 具非線性支撐之轉子-滑動軸承系統的建立 76 4-3-1 運動方程式 76 4-3-2 運動方程式無因次化 78 4-4 數值模擬與討論 79 第五章 以微極流體為潤滑劑的轉子-軸承動態分析 101 5-1導論 101 5-2微極流體潤滑劑之修正之雷諾方程式與油 膜力計算 103 5-3非線性支撐之轉子-滑動軸承系統的建立 106 5-3-1運動方程式 106 5-3-2運動方程式無因次化 108 5-4數值模擬與討論 109 第六章 油膜軸承-轉子系統在紊流流場下之動態分析 128 6-1 導論 128 6-2 紊流潤滑之修正之雷諾方程式與油膜力 計算 129 6-3 非線性支撐之轉子-滑動軸承系統的建 立 131 6-3-1 運動方程式 131 6-3-2 運動方程式無因次化 134 6-4 數值模擬與討論 135 第七章多孔性擠壓油膜阻尼支撐之轉子-軸承動態分析 149 7-1 導論 .149 7-2 修正之雷諾方程式與油膜力計算 151 7-3 具非線性支撐之轉子-軸承系統的建立 154 7-3-1 運動方程式 154 7-3-2 運動方程式無因次化 156 7-4 數值模擬與討論 157 第八章 結論與建議 176 8-1 結論 176 8-2未來研究方向與建議 179 參考文獻 182 自述 194 歷年發表著作

    Abdallah, A. E. and Lotfi, H. G., “An inverse solution for finite journal bearings lubricated with couple stress fluids,” Tribology International, 2001, 34, 107-118.
    Adiletta, G., Guido, A. R., and Rossi, C., “Chaotic motions of a rigid rotor in short journal bearings,”Nonlinear Dynamics, 1996, 10, 251-269.
    Adiletta, G., Guido, A. R., and Rossi, C., “Nonlinear dynamics of a rigid unbalanced rotor in short bearings. Part І: Theoretical Analysis.,”Nonlinear Dynamics, 1997, 14, 57-87.
    Adiletta, G., Guido, A. R., and Rossi, C., “Nonlinear dynamics of a rigid unbalanced rotor in short bearings. Part Ⅱ: Experimental Analysis.,”Nonlinear Dynamics, 1997, 14, 157-189.
    Arnold, V. I., Ordinary Differential Equations, 1973, New York, Springer-Verlag.
    Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, 1983, New York, Springer-Verlag.
    Bently, D. E., “Forced Subrotative Speed Dynamic Action of Rotating Machinery,” ASME Paper, 1974, No. 74-Pet-16.
    Bently, D. E., Zimmer, S., and Palmatier, G. E., “Interpreting vibration information from totating machinery.“ 1986, 2, 14-23.
    Birkhoff, G. D., “On the Periodic Motion of Dynamical Systems,” Acta Mathematica, 1927, 50, 359-365. (Reprinted in MacKay and Meiss,(1987))
    Brown, R. D., “Chaos in the Unbalance Response of Journal Bear- ings,”Nonlinear Dynamics, 1994, 5, 421-432.
    Capone, G., Russo, M., and Russo, R., “Dynamic characteristics and stability of a journal bearing in a non-laminar lubrication regime,” Tribology International, 1987, 20, 255-260.
    Childs, D. W.,“Fractional Frequency Rotor Motion Due to Non- symmetric Clearance Effects,”ASME Journal of Engineering for Power, 1982, 533-541.
    Chu, F., and Zhang, Z., “Bifurcation and chaos in rub-impact jeffcott rotor system,” Journal of Sound and Vibration, 1998, 210(1), 1-18.
    Chua, L.O. Desoer, C.A. Kuh, E.S. “Linear and Nonlinear Circuits,” McGraw - Hill International Edition 1987.
    Constantinescu, V. N., “Analysis of bearings operating in turbulent regime,” Journal of Basic Engineering, 1962, 139-151.
    Cusano, C., “Lubrication of porous journal bearings,” Transactions of ASME, Journal of Lubrication Technology, 1972, 94(1), 69-73.
    Das, N. C., “Elastohydrodynamic lubrication theory of line contacts: couple stress fluid model,” STLE Tribology Transactions, 1997, 40(2), 353-359.
    Das, N. C. “A study of optimum load-bearing capacity for slider bearings lubricated with couple stress fluids in magnetic field,” Tribology International, 1998, 31(7), 393-400.
    Das, S., Guha, S. K., and Chattopadhyah, A. K., “On the steady-state performance of misaligned hydrodynamic journal bearings lubricated with micropolar fluids,” Tribology International, 2002, 35, 201-210.
    Das, S., Guha, S. K., and Chattopadhyah, A. K., “Linear stability of hydrodynamic journal bearings under micropolar lubrication,” Tribology Intertional, 2005, 38, 500-507.
    Donald, E., and Bently, C. H., “Dynamics stiffness in whirl and whip,” 1998, 19(1), 4-9.
    Ehrich, F. F., “High Order Subharmonic Response of High Speed Rotor in Bearing Clearance,”ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1988, January, 9-16.
    Ehrich, F. F., “Some Observations of Chaotic Vibration Phenomena in High-Speed Rotordynamics,”ASME Journal of Vibration and Acoustics, 1991, 113, 50-57.
    Elrod, H. G., and Ng, C. W., “A theory for turbulent films and its application to bearings,” Journal of Lubrication Technology, 1967, 86, 346-362.
    Elsharkawy, A. A., and Guedouar L. H., “An inverse solution for finite journal bearings lubricated with couple stress fluids,” Tribology International, 2001, 34, 107-118.
    Elsharkawy, A. A., and Guedouar, L. H., “Hydrodynamic lubrication of porous journal bearings using a modified Brinkman-extended Darcy model,” Tribology International, 2001, 34, 767-777.
    Eringen, C., “Theory of micropolar fluids,” Journal of Mathematical Mechanics, 1966, 16(1), 1-18.
    Eringen, A. C., “Theory of thermomicro fluids,” Journal of Mathematical Analysis and Application, 1972, 38(9), 480-490.
    Foiles, W. C., and Bently, D. E., “Balancing with phase only (single-phase and multiphase)”. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design, 1988, 110, 151-157.
    Goldman, M. P., and Muszynaska, A., “Chaotic behavior of rotor/stator systems with rubs,“ ASME Journal of Engineering for Gas Turbine and Power, 1994, 116(3), 692-701.
    Gupta, R. S., and Kapur, V. K., “Centrifugal effects in hydrodynamic porous thrust bearing,” Journal of Lubrication Technology, 1979, 101, 381-385.
    Gupta, R. S., and Sharma, L. G., “Analysis of couple stress lubricant in hydrostaticd thrust bearings,” WEAR, 1988, 48, 257-269.
    Hashimoto, H., Wada, S., and Nojima, K., “Performance characteristics of worn journal bearings in both laminar and turbulent regimes, Part I: steady state characteristics,” ASLE Transactions, 1986, 29(4) 565-571.
    Hashimoto, H., Wada, S., and Nojima, K., “Performance characteristics of worn journal bearings in both laminar and turbulent regimes, Part II: dynamic characteristics,” ASLE Transactions, 1986, 29(4) 572-577.
    Holmes, R., “The vibration of a rigid shaft on short sleeve bearings,”Journal of Mechanical Engineering Science, 1960, 2, 337-341.
    Holmes, R., “Non-linear performance of turbine bearings,”Journal of Mechanical Engineering Science 1970, 12, 377-380.
    Holmes, A. G., Ettles, C. M., and Mayes, I. W., “Aperiodic behavior of a rigid shaft in short journal bearings,”International Journal for Numerical Method in Engineering, 1978, 12, 695-702.
    Holmes, P. J. and Marsden, J. E., “Melnikov’s method and Arnold diffusion for perturbations of integrable Hamiltonian systems,”Journal of Mathematical Physics, 1982, 23(4), 669-675.
    Holmes, P. J., “Nonlinear Oscillations, Dynamical Systems and Bifur- cations of Vector Fields”, 1983, New York, Springer-Verlag.
    Hsu, C. H., Lin, J. R., and Chiang, H. L., “Combined effects of couple stresses and surface roughness on the lubrication of short journal bearings,” Industrial Lubrication and Tribology, 2003, 55(5), 233-243.
    Hirs, G. G., “A bulk-flow theory for turbulence in lubricants films,” Journal of Lubrication Technology, 1973, 95, 137-146.
    John, S, “Operating problems with high speed turbomachinery, cause and correction” Sawer’s Turbomachinery Publications, Norwalk, CT.
    Kaneko, S., Hashimoto, Y., and Hiroki, I., “Analysis of oil-film pressure distribution in porous journal bearing under hydrodynamic lubrication conditions using an improved boundary conditions,” Transactions ASME Journal of Tribology, 1997, 119, 171-178.
    Khonsari, M. M., and Brewe, D. E., “On the performance of finite journal bearing lubricated with micropolar fluid,” Tribology Transactions, 1989, 32(2), 155-160.
    Kolmogorov, A.N., “The general theory of dynamical systems and classical mechanics,” Bulletin of the American Mathematics, 1954, 315-333.
    Kumar, A., and Mishra, S. S., “Stability of a rigid rotor in turbulent hydrodynamic worn journal bearings,” WEAR, 1996, 193, 25-30.
    Lahmar, M., “Elastohydrodynamic analysis of double-layered journal bearings lubricated with couple-stress fluids,” Proceedings Institution of Mechanical Engineering, Part J: J. Engineering Tribology, 2005, 219, 145-171.
    Lahmar, M., Haddad, A., and Nicolas, D., “An optimized short bearing theory for nonlinear dynamic analysis of turbulent journal bearings,” European Journal of Mechanics- A/Solids, 2000, 19, 151-177.
    Lahmar, M. E., “Analysis of double-layered journal bearings lubricated with couple-stress fluids,” Proceedings Institution Mechanical Engineering, Part J: Journal of Engineering Tribology, 2005, 219, 145-171.
    Lin, T. R., “Hydrodynamic lubrication of journal bearings including micropolar lubricants and three-dimensional irregularities,” WEAR, 1996, 192 ,21-28.
    Lin, T. R., “The effects of three-dimensional irregularities on the performance characteristics of turbulent journal bearing,” WEAR, 1996, 196, 126-132.
    Lin, J. R., “Squeeze film characteristics of long partial journal bearings lubricated with couple stress fluids,” Tribology International, 1997, 30(1), 53-58.
    Lin, J. R., “Static and dynamic behaviour of pure squeeze films in couple stress fluid-lubricated short journal bearings,” Proceedings Institution of Mechanical Engineering, 1997, 62(1), 175-184.
    Lin, J. R., “Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids,” Tribology International, 1999, 32, 207-216.
    Lin, J. R., “Linear stability analysis of rotor-bearing system: couple stress fluid model,” Computers and Structures, 2001, 79, 801-809.
    Lorenz, E. N., “Deterministic Non-periodic Flow,”Journal of Atmospheric Science, 1963, 20, 130-141.
    May, R. M., “Simple Mathematical with Very Complicated Dynamics,”Nature, 1976, 261, 459-467.
    Morgan, V. T., and Cameron, A. “Mechanism of lubrication in porous metal bearings,” In: Proceedings of the Conference on Lubrication and Wear, London. Institution of Mechanical Engineers, 1957, 151-157.
    Moser, S. "Kritik der traditionellen Technikphilosophie." In H. Lenk and S. Moser, eds., Techne Technik Technologie: Philosophische Perspektiven , Pullach, 1973, 11 - 81.
    Murti, P. R. K., “Hydrodynamic lubrication of long porous bearings,” WEAR, 1971, 18, 449-460.
    Murti, P. R. K., “Effect of slip flow in narrow porous bearings,” Transactions ASME, Journal of Lubrication Technology, 1973, 95, 69-73.
    Muszynska, A., “Partial Lateral Rotor to Stator Rubs,”IMechE, 1984, Paper No. C281/84.
    Muszynaska, A., and Goldman, M. P., “A new tool in shaft crack detection,” IMechE, 1992, Paper c430/090.
    Naduvinamani, N. B., and Hiremath, P. S., and Gurubasavaraj, G., “Squeeze film lubrication of a short porous journal bearing with couple stress fluids,” Tribology Intertional, 2001, 34, 739-747.
    Ocvirk, F., "Short Bearing Approximation for Full Journal Bearings," NACA TN 2,1952, 0808.
    Oliver, D. R., “Load enhancement effects due to polymer thickening in a short model journal bearings,” Journal of Non-Newtonian Fluid Mechanics, 1988, 30, 185-196.
    Pakash, J., and Vij, S. K., “Analysis of narrow porous journal bearing using Beavers-Joseph criterion of velocity slip,” Transaction ASME, Journal of Applied Mechanics, 1974, 96(2), 348-353.
    Prakash, J., and Sinha, P., “Lubrication theory for micropolar fluids and its application to a journal bearing,” International Journal of Engineering Science,1975, 13, 217-232.
    Ramanaiah, G., “Slider bearings lubricated by fluids with couple stress,” WEAR, 1979, 52, 27-36.
    Shehawey, E. F. E., and Mekheimer, K. S., “Couple-stresses in peristaltic transport of fluids,” Journal of Physics D: Applied Physics, 1994, 27, 1163-1170.
    Shukla, J. B., “Generalized Reynolds equation for micro-polar lubricants and its application to optimum one-dimensional slider bearings: effects of solid-particle additives in solution,” Journal of Mechanical Engineering Science,1975, 17, 280-284.
    Smale, S., “Dynamical systems and the topological conjugacy problem for diffeomorphisms,” Proceedings of the International Congress of Mathematicians, 1963, 490-496.
    Smale, S., “A survey of some recent development in differential topology,” Bulletin of the American Mathematical Society. 1963, 69, 131-146.
    Stokes, V. K., “Couple-stresses in fluids,” The physics of Fluids, 1966, 9, 1709-1715.
    Spikes, H. A., “The behaviour of lubricants in contacts: current understanding and future possibilities,” Proceeding Institution Mechanical Engineering, Part J: J. Engineering Tribology, 1994, 28, 3-15.
    Stokes, V. K., “Couple-stresses in fluids,” The physical Fluids, 1996, 9, 1709-1715.
    Trumpler, R.J., Weaver H.F., Statistical Astronomy (Dover Publicaions, Inc., New York).
    Ueda, Y., “Randomly Transitional Phenomena in the System Governed by Duffing’s Equation,”Journal of Statistical Physics, 1979, 20, 181-196.
    Wang, X. L., and Zhu, K. Q., “A study of the lubricating effectiveness of micropolar fluids in a dynamically loaded journal bearing (T1516),” Tribology Intertional, 2004, 37, 481-490.
    Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., “Deter- mining Lyapunov Exponents From a Time Series,”Physica D, 1985, 16, 285-317.
    Yuet, J. J., Goldman, P., and Bently, D. E., “A Muzynska Rotor/seal experimental and analytical study on full annular rub,” ASME Journal of Engineering for Gas Turbine and Power, 2002, 124, 340-350.
    Zaheeruddin, K. I. M., “Micropolar fluid lubrication of one-dimensional journal bearings,” WEAR, 1978, 50, 211-220.
    李振平、羅躍綱、姚紅良、聞邦樁,「考慮油膜力的彈性轉子系統碰摩故障研究」,東北大學學報,2002,Vol.23(10),980-983。
    姚賀騰,「轉子-油膜軸承系統之混沌行為分析與控制」,博士論文,2000。

    下載圖示 校內:2009-07-07公開
    校外:2009-07-07公開
    QR CODE