簡易檢索 / 詳目顯示

研究生: 陳碩宇
Chen, Shuo-Yu
論文名稱: 碳膜和鎵膜對真空蒸鍍熱氧化法製備之氧化鎵薄膜氣體感測器感測特性之影響
Effect of carbon film and gallium film on the gas sensing characteristics of Ga2O3 thin film gas sensor prepared by rheotaxial growth and thermal oxidation
指導教授: 陳進成
Chen, Chin-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 120
中文關鍵詞: 氣體感測器氧化鎵響應時間
外文關鍵詞: gas sensor, gallium oxide, carbon, gallium, response time
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於台灣的工業區林立,加上周圍大多是住商混合區,對於排放氣體方面,必須要有即時性的環境監測,以達到預警效果。氧化鎵材料在高溫環境下展現半導體性質與高穩定性,並對還原性氣體具感測性質。本研究以電漿增強化化學氣相沉積、物理氣相沉積及水蒸汽熱氧化法在石英基板上製備出碳/氧化鎵與鎵/氧化鎵薄膜氣體感測器。針對兩種複合膜,改變其鍍膜先後順序、厚度及有無經過高溫程序,探討其表面形態、電性、晶相結構以及元素組成。
    實驗結果顯示,當碳膜層在底層,鎵膜在上層一起進行水蒸汽熱氧化法後,並不會影響氧化鎵的表面型態。當碳為底層時,對感測性沒有明顯提升,甚至有減少的趨勢,而當氧化鎵在底層,碳或鎵膜層在上層時,對氧化鎵的晶相沒有影響,但可提升感測度。氧化鎵薄膜上鍍上鎵膜層時,其薄膜可有效縮短其響應時間至5~20秒內,其最佳響應時間比氧化鎵/碳薄膜加快了將近4倍。

    Gallium oxide possesses the property of the semiconductor which is stable at high temperature, and has been applied in detecting reducing gas recently. In this study, a layer of Carbon/Gallium was deposited on top of Ga2O3 film (C/Ga2O3 and Ga/Ga2O3) or a layer of carbon under Ga2O3 film (Ga2O3/C) via a series of steps: plasma enhanced chemical deposition(PECVD) , physical vapor deposition(PVD) and rheotaxial growth and thermal oxidation (RGTO) with water vapor. The morphology, crystalline structure, element ratio and electrical property of C/Ga2O3 and Ga/Ga2O3 were measured as functions of the position of carbon film, the thickness of gallium and the condition of annealing. The experimental results show that carbon film position has no effect upon the surface morphology, and the sensitivity of Ga2O3/C thin film doesn`t increase obviously. However the deposition of carbon film or gallium film on top of Ga2O3 film increases the sensitivity obviously, and has no effect upon the Ga2O3 crystalline structure. The response time of Ga/Ga2O3 thin film reduces to 5~20 seconds. The response of Ga/Ga2O3 is much faster than Ga2O3/C thin film.

    中文摘要………………………………………………………..…….….I 英文摘要…………………………………………………………..……..II 致謝………………………………………………………………..….…..III 目錄………………………………………………………………...……..IV 圖目錄…………………………………………………………………….VIII 表目錄………………………………………………………………...…. XIII 符號說明…………………………………………………………...……..XIV 第一章 緒論…………………………………………………………………….. 1 1.1簡介……………………………………………………….………….1 1.2 研究發展與文獻回顧……………………………………….………6 1.3研究動機與目標……………………………………………….…….10 第二章 理論回顧及分析…………………………………………………………12 2.1 電漿輔助化學氣相沉積…………………………………………….12 2.2 物理氣相沉積………………………………………………....…….13 2.3真空蒸鍍理論…………………………………………………….....14 2.3.1 真空理論…………………………………………………….…14 2.3.2 蒸鍍理論…………………………………………………….…16 2.4 薄膜成長機制與模式……………………………………………....19 2.4.1蒸氣原子在基板的表面行為…………………………….…….19 2.4.2薄膜沉積的因素………………………………………………..21 2.4.3薄膜的成長模式………………………………………………..25 2.5 氣體感測器的工作原理……………………………………….…...28 2.5.1 蕭特基接觸……………………………………………….…...29 2.5.2電子空乏層與晶粒大小的關係…………….……………........33 2.5.3氧氣的吸附與還原性氣體的作用……………………….……37 2.5.4氧空位…………………………………………………….……42 2.6 Ga2O3材料及結構簡介…………………………………………..…45 第三章 實驗系統及操作………………………………………………………..50 3.1 實驗流程…………………………………………………………...53 3.2 基板與材料的準備………………………………………………...55 3.3 真空蒸鍍系統……………………………………………………...59 3.4 蒸鍍程序…………………………………………………………...62 3.5 高溫氧化程序……………………………………………………...63 3.6 結構分析…………………………………………………………...64 3.7元素組成分析……………………………………………................64 3.8 電性量測及氣體偵測……………………………………………...64 第四章 實驗結果與討論………………………………………………………..67 4.1碳膜層位置對碳/氧化鎵及氧化鎵/碳薄膜型態之影響……..……68 4.2鎵膜對鎵/氧化鎵薄膜型態之影響…………………………………70 4.3 EDS分析……………………………………………………..……..74 4.3.1對同一片薄膜上型態不同之氧化鎵薄膜之元素分析……..…74 4.3.2對碳/氧化鎵薄膜感測實驗前後之元素分析………………….76 4.3.3對鎵/氧化鎵薄膜感測實驗前後之元素分析………………….78 4.4 XRD分析……………..………………………………………….…74 4.4.1 氧化鎵/碳及碳/氧化鎵薄膜晶相之XRD分析………………81 4.4.2 鎵/氧化鎵薄膜晶相之XRD分析…………………………….83 4.5 XPS分析…………..………………………………………………..86 4.6電性探討……………..……………………………………………..88 4.6.1 碳膜位置對氧化鎵薄膜之電性影響…………………...…...93 4.6.2 鎵膜層對氧化鎵薄膜之電性影響……………...…………...98 4.6.3氮氣氣氛下高溫回火處理後之鎵膜層對氧化鎵薄膜 之電性影響……...………………………………………….…102 4.6.4感測時間對氮氣氣氛下高溫處理後之鎵/氧化鎵薄膜 之電性影響……...………………………………………….…109 第五章 結論……………………………………………………………………113 未來展望………………………………………………………………115 參考文獻………………………………………………………………116

    1. 葉陶淵,”化學感測器中氣體感測器的新動向”,科儀新知第20卷4期pp.72-76 (1999)
    2. 李俊遠,氣體感測器介紹,工業材料124期pp.82,(1997)
    3. 張希誠,感測器的基礎與應用:工廠與機器人篇,第49-51頁( 1986)
    4. 邱碧秀,氣體感測器:半導體型氣體感測器,科儀新知,第6卷,第6期,第67-71頁( 1985)
    5. 蔡嬪嬪,氣體感測器的新動向,工業材料,第150期,第98頁( 1999)
    6. G. Morel, Method development and quality assurance for the analysis of hydrocarbons in environmental samples, International Journal of Environmental Analytical Chemistry, Vol. 63, No. 4, pp. 269-288 ( 1996)
    7. U. R. Bernier and R. A. Yost, Vacuum operation of the flameioniza-tion detector for gas chromatography, Journal of Chromatographic Science, Vol. 31, No. 9, pp. 358-362 ( Sep. 1993)
    8. M. Munidasa, A. Mandelis and A. Katz, Purely thermal wave based non-chemical photopyroelectric gas sensor: application to hydrogen, Journal De Physique, Vol. 4, No. 7, pp. C7-515-518 ( July 1994)
    9. E. A. Symons, Catalytic gas sensors in Gas Sensors: Principles, Operation and Development, ed. G. Sberveglieri, Boston: Kluwer Academic Publishers, pp. 169 ( 1992)
    10. P. B. Weise, Effect of electronic charge transfer between adsorbate and solid on chemisorption and catlysis, J. Chem. Phys. , Vol. 2, pp. 1531-1538(1953)
    11. 鄭煜騰,氣體感測器的市場分析與發展概況,科儀新知,第18卷,第5期,第76-84頁( 1995)

    12. P.J.Shaver, Activated tungsten oxide gas detectors, Appl. Phys. Lett. Vol.11 pp.255-257(1967)
    13. G. Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, Oxide Materials for Development of Integrated Gas Sensors- A Comprehensive Review, Crit. Rev. Solid State Mater. Sci., Vol. 29:3, 111 -188( 2004)
    14. 陳寶清,真空表面處理工學,表面雜誌,第31期( 1992)
    15. 國家科學研究院儀器科學研究中心,真空技術與應用( 2001)
    16. Sze, S. M. Physics of Semiconductor Devices
    17. J. A. Venables, GDT Spiller and M Hanbucken, Nucleation and gro- wth of thin film, Reports on Progress in Physics, Vol.47 , pp.399-459(1984)
    18. S. Geller, Crystal structure of β-Ga2O3, The Journal of Chemical Physics, Vol. 33, No. 3, pp. 676-684( 1960)
    19. 陳憶萍,真空蒸鍍熱氧化法製備奈米線氧化鎵薄膜及其氣體感測特性之研究,國立成功大學碩士論文( 2004)
    20. R. Roy, V. G. Hill and E. F. Osborn, Polymorphism of Ga2O3 and the system Ga2O3-H2O, J. Am. Ceram. Soc., Vol. 74, pp. 719-722( 1952)
    21. S. Geller, Crystal structure of β-Ga2O3, J. Chem. Phys., Vol. 33, pp. 676-684( 1960)
    22. 袁士庭,水蒸氣熱氧化法製備碳/氧化鎵異質界面薄膜氣體感測器之研究,國立成功大學碩士論文(2008)
    23. 吳政道,電漿化學氣相沉積氮化鋁薄膜之研究,國立成功大學碩士論文(1989)
    24. K. Reichelt and X. Jiang, “The preparation of thin films by physica vapor deposition methods ”, Thin Solid Films, Vol. 191, pp. 91-126 (1990)
    25. H. Windischmann and P. Mark, A model for the operation of a thin film SnOx conductance-modulation carbon monoxide sensor, J. Electrochem. Soc. Vol.126 No.4 pp.627-633 (1979)
    26. 賴耿陽,真空蒸鍍應用技術,復漢出版社(1991)
    27. Z. Zeleny , Proc.Camb.Phil.Soc.Vol.18, pp.71(1915)
    28. J. A. Venables and G. L. Price, Nucleation of thin films in Epitaxial Growth , ed. J. W. Matthews, New York :Academic Press, pp. 381( 1975)
    29. 薛永浚,不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜型態及感測特性之研究,國立成功大學碩士論文(2006)
    30. V. E. Bauer, Phanomenologische theorie der kristallabscheidung an oberflachen, I. Zeitschrift fur Kristallographie, Bd., Vol. 110, pp. 372-394( 1958)
    31. 林鴻明、曾世杰,奈米半導體材料之特殊氣體感測性質,工業材料,第157期,第163-169頁( 2000)
    32. S. R. Morrision, Chemical sensors in Semiconductor Sensors, ed. S. M. Sze, New York: John Wiley and Sons, Inc., pp. 383( 1994)
    33. P. B. Weisz, Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis, The Journal of Chemical Physics, Vol. 21, No. 9, pp. 1531-1538( 1953)
    34. S. R. Morrison, The Chemical Physics of Surfaces 2nd , New York: Plenum Press pp.251 (1990)
    35. D. Kohl, Surface processes in the detection of reducing gases with SnO2-based devices, Sens. Actuators Vol.18 pp.71-113 (1989)
    36. N. Yamazoe, J. Fuchigami, M. Kishikawa and T.Seiyama, Interac- tions of tin oxide surface with O2, H2O and H2, Surf. Sci. Vol.86 pp. 335-344 (1979)
    37. P. Kofstad, “Defect reactions” in Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, New York: Wiley-Interscience, pp. 15 (1972)

    38. F.A.Kroger,“Detailed description of crystalline solids; imperfec-tions” in The Chemistry of Imperfect Crystals, Volume 2, New York: North-Holland Pub. Co.; American Elsevier, pp. 1 (1974)
    39. J. Geurts, S. Rau, W. Richter and F. J. Schmitte, “SnO films and their oxidation to SnO2: Raman scattering, IR reflectivity and X-ray diffraction studies”, Thin Solid Films, Vol. 121, pp. 217-225 (1984)
    40. S. C. Chang, Thin-film semiconductor NOx sensor, IEEE Transac- tions on Electron Devices Vol. ED-26, No. 12 pp. 1875~1880 (1979)
    41. G. Heiland, Homogeneous semiconducting gas sensors, Sens. Actuators Vol.2 pp. 343~361 (1982)
    42. D. Gourier, L. Binet and E. Aubay, “Magnetic bistability and memory of conduction electrons released from oxygen vacancies in gallium oxide”, Radiation Effects and Defects in Solids, Vol. 134, pp. 223-228 (1995)
    43. M.Fleischer, W.Hanrieder and H.Meixner, “Stability of semicon-ducting gallium oxide thin films”, Thin Solid Films, Vol.190, pp. 93-102 (1990)
    44. R. Brown, Thin film substrates in Handbook of Thin Film Technology, ed. L. I. Maissel and R. Glang, New York: McGraw-Hill, pp. 6-37 (1970)
    45. C. J. Smithells, Vapour pressures in Metals Reference Book, London and Boston: Butterworths, pp. 231(1976)
    46. Dao Wang), Jun Jin, Dingguo Xia, Qing Ye, Jie Long, The effect of oxygen vacancies concentration to the gas-sensing properties of tin dioxide-doped Sm, Sensors and Actuators B Vol.66, pp. 260–262 (2000)
    47. A. Rothschild and Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors, Applied Physics, Vol. 95, p6374-6380( 2004)
    48. 許嘉豪,碳對氧化鎵薄膜氣體感測器特性之影響,國立成功大學碩士論文(2009)

    49. A Trinchi1, W Wlodarski1, Y X Li, G Faglia and G Sberveglieri, Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response, J. Phys. D: Appl. Phys. Vol.38 , pp. 754–763 (2005)
    50. Adrian Trinchi, K. Galatsis, W. Wlodarski, and Y. X. Li, A Pt/Ga2O3-ZnO/SiC Schottky Diode-Based Hydrocarbon Gas Sensor, IEEE SENSORS JOURNAL, VOL. 3, NO. 5, (2003)
    51. Yongxiang Li, Adrian Trinchi, Wojtek Wlodarski, Kosmas Galatsis, Kourosh Kalantar-zadeh, Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants, Sensors and Actuators B Vol.93 , pp.431–434 (2003)
    52. J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, The effects of thickness and operation temperature on ZnO:Al thin film CO gas sensor, Sensors and Actuators B Vol.84 , pp. 258–264 (2002)

    下載圖示 校內:2011-10-27公開
    校外:2013-10-27公開
    QR CODE