| 研究生: |
廖廷睿 Liao, Ting-Jui |
|---|---|
| 論文名稱: |
混磚砂混凝土力學性能及抗剪強度研究 Studies on Mechanical Properties and Shear Strength of Concrete with Blended Brick Sand |
| 指導教授: |
劉光晏
Liu, Kung-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 137 |
| 中文關鍵詞: | 混磚砂細粒料 、耐久性 、收縮性質 、抗剪能力 、循環經濟 |
| 外文關鍵詞: | recycled fine aggregate, shrinkage, durability, shear strength, circular economy |
| 相關次數: | 點閱:62 下載:68 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
世界各地隨著經濟成長,上一世代的基礎建設、商用或是住宅大樓等都市更新計畫不斷地推動進行著。隨著數量逐年攀升的都更案,營建拆除工程所產生的營建剩餘土石方也逐漸無法消化。現行對於此種營建剩餘土石方多採掩埋方式處理,此一方法無論是對於環境亦或是循環經濟層面並非是最佳做法。本研究嘗試將B5類營建剩餘土石方中佔比多數的混凝土碎塊及廢磚瓦進一步破碎化、清洗、研磨至接近混凝土細粒料之粒徑大小產品—混磚砂細粒料。期望透過細粒料取代最終能夠將此再生混凝土作為結構混凝土使用,並同時解決營建剩餘土石方掩埋問題、減緩天然河砂開採需求日益增加並達到真正循環經濟等多項目標。
本研究計畫大致分為兩階段進行,第一階段先針對此一細粒料材料性質進行吸水率、比重及篩分析等細粒料基本試驗,結果發現混磚砂細粒料相較於天然細粒料有著360%的吸水率以及5%輕質之比重。完成基本試驗後,將進行混凝土試驗確定混磚砂細粒料用於混凝土配比中不同水膠比與混凝土抗壓強度,由三種水膠比0.600、0.486及0.410三種混凝土配比28天齡期混凝土抗壓強度試驗得出水膠比與28天齡期抗壓強度關係曲線。由此曲線上找出混磚砂細粒料混凝土28天目標設計強度350及280 kgf/cm2對應之水膠比為0.488及0.424後,進一步確認其3至28天齡期發展,除了28天齡期抗壓強度結果皆滿足設計強度要求並發現此二配比混凝土抗壓強度成長至28天仍有繼續升高的趨勢。因此使用此二水膠比混凝配比再製作新一批次混凝土圓柱試體,除了追蹤高達180天齡期之抗壓強度成長趨勢外,於各齡期試驗彈性模數及波松比;收縮性質方面則包括了水泥砂漿乾縮試驗、混凝土薄板抗裂試驗;耐久性部分採用快速氯離子滲透試驗RCPT及氯離子擴散試驗RCM。由此系列試驗結果可知,混磚砂細粒料混凝土配比於180天齡期抗壓強度可達560 kgf/cm2;同水膠比下,各齡期抗壓試驗強度皆較使用天然細粒料之對照組強度下降15%;依據土木401-110彈性模數計算公式,則較對照組下降10%;依據ASTM C649波松比測定方法,材料取代對於波松比並無明顯影響;收縮性質方面,乾縮性能及薄板抗裂能力皆較對照組來的更佳;耐久性試驗中,RCPT試驗顯示材料取代對此試驗結果並無明顯差異,RCM試驗結果反而由使用混磚砂細粒料之實驗組呈現更好的抗滲透性能。
由第一階段基本混凝土試驗能夠確認此混磚砂細粒料混凝土作為結構用混凝土之可行性,第二階段試驗便進行小尺寸梁抗剪實驗,作為將來大型實尺寸構件實驗之先行試驗。此試驗採用尺寸15 cm*15 cm*53 cm之抗彎梁試體模,主要配置四種鋼筋比之斷面分別使用混磚砂細粒料混凝土及天然細粒料混凝土比較極限剪力強度隨混凝土取代、鋼筋比配置差異變化趨勢。三分點抗彎實驗結果顯示,縮尺斷面梁之極限剪力強度不因混凝土材料取代而有所差異,並且未呈現出隨鋼筋比提高而增加剪力強度之趨勢。由此階段性試驗可得出,採用現行規範之理論剪力預估公式對於混磚砂細粒料混凝土剪力強度預測將比一般天然細粒料混凝土更為保守,無須調整公式參數。
In this research, the processed construction surplus soil is used as concrete fine aggregate to get the recycled concrete. This research project is roughly divided into two stages. In the first stage, the basic tests of fine aggregates such as water absorption, specific gravity and sieve analysis were carried out. After that, the concrete is mixed with three different water-cementitious ratio for testing concrete compressive strength. From this test, the water-cementitious ratios corresponding to the 28-day target design strengths of 350 and 280 kgf/cm2 are found to be 0.488 and 0.424, and are further confirmed for its development from 7 to 180 days. At the same time, recycled concrete’s elastic modulus and Poisson's ratio, two types of shrinkage tests, two types of durability tests were tested at each age. In the second stage, the same mixing ratios of recycled concrete were used for shear strength test with reduced size reinforcement concrete beam. With different types of reinforcement ratio, it is aimed to confirm the relation between shear strength and reinforcement ratio.
From this two stages research, it is proved that recycled concrete could fulfill compressive strength to 560 kgf/cm2 at 180-day. Furthermore, using the proper water-cementitious ratio can reach any designed compressive strength. For the elastic modulus calculated by「土木401-110」, results showed that elastic modulus decreased 10% with recycled fine aggregate. As for the Poisson's ratio test, there werent apparent differences on the test results with recycled fine aggregate. Shrinkage tests exhibited using recycled fine aggregate would contribute to significantly better performance. Durability tests and shear strength test demonstrated recycled concrete could have well durability performance same as normal concrete. Shear strength test proved that recycled concrete is applicable for current theoretical shear strength formulas.
[1] 林韋辰,營建混合物再利用機構資源化產品流向管理之研究,2011,碩士論文,國立中央大學土木工程研究所
[2] 內政部營建署,混凝土結構設計規範
[3] Gyanendra Kumar Attri, Ramesh Chandra Gupta, Sandeep Shrivastava, “ Sustainable precast concrete blocks incorporating recycled concrete aggregate, stone crusher, and silica dust,” Research Scholar, Malaviya National Institute of Technology Jaipur, 302017, India. (2022)
[4] Pengfei Ren, Bo Li, Jin-Guang Yu, Tung-Chai Ling,” Utilization of recycled concrete fines and powders to produce alkali-activated slag concrete blocks,” College of Civil Engineering, Hunan University, Changsha, 410082, Hunan, China. (2020)
[5] May M. Atyia , Mohamed G. Mahdy , Mohamed Abd Elrahman,“Production and properties of lightweight concrete incorporating recycled waste crushed clay bricks,’’ Structural Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, Egypt. (2021)
[6] Anna M. Grabiec , Jeonghyun Kim , Andrzej Ubysz and Pilar Bilbao ,”Some Remarks towards a Better Understanding of the Use of Concrete Recycled Aggregate: A Review” Sustainability .(2021)
[7] Rahul Singh, Dheeresh Nayak, Arunabh Pandey, Rajesh Kumar, Veerendra Kumar, ” Effects of recycled fine aggregates on properties of concrete containing natural or recycled coarse aggregates: A comparative study, “Journal of Building Engineering 45. (2022)
[8] Navdeep Singh, Akhil Singh, Nitin Ankur, Parveen Kumar, Mahesh Kumar, Tarun Singh, “ Reviewing the properties of recycled concrete aggregates and iron
slag in concrete, “ Journal of Building Engineering 60 (2022) 105150.
[9] Yunpeng Liu, Chao Yang, Fazhou Wang, Shuguang Hu, Ming Zhu, Chuanlin Hu, Linnu Lu, Zhichao Liu, “Evaluation on recycled clinker production and properties from regeneration of completely recycle concrete, ” Construction and Building Materials 301 (2021) 123882
[10] Ali S. Alqarni, Husain Abbas, Khattab M. Al-Shwikh, Yousef A. Al-Salloum, ” Treatment of recycled concrete aggregate to enhance concrete performance, “ Construction and Building Materials 307 (2021) 124960
[11] Mohammed A. Abed, Mohammad Alrefai, Asaad Alali, Rita Nemes, and Sherif Yehia, “Effect of Nominal Maximum Aggregate Size on Performance of Recycled Aggregate Self-Consolidating Concrete: Experimental and Numerical Investigation “ ACI Materials Journal Technical Paper, Title No. 119-M84.
[12] Lauren Likes, Ananya Markandeya, Md Mostofa Haider, David Bollinger, John S. McCloy, Somayeh Nassiri,”Recycled concrete and brick powders as supplements to Portland cement for more sustainable concrete” Journal of Cleaner Production 364 (2022) 132651
[13] L.BaaliA. NaceriZ. Rahmouni M.W. NouiMehidi, (2011). Experimental Study of the Possibility to Make a Mortar with Ternary Sand (Natural and Artificial Fine Aggregates), Physics Procedia, 22, 275-285.
[14] Davoud Tavakoli, Ali Heidari, and Sasan Hayati Pilehrood (2014). Properties of Concrete made with Waste Clay Brick as Sand Incorporating Nano SiO2, Indian Journal of Science and Technology 7(12):1899-1905.
[15] Xian LI,Fujin WANG,Fei LI (2015), Effect of Recycled Waste Brick Fine Aggregate on Compressive Strength and Flexural Strength of Mortar, 5th International Conference on Civil Engineering and Transportation.
[16] Mahdi Nematzadeh, Javad Dashti, Behnoud Ganjavi (2018). Optimizing compressive behavior of concrete containing fine recycled refractory brick aggregate together with calcium aluminate cement and polyvinyl alcohol fibers exposed to acidic environment. Construction and Building Materials, 164(10), 837-849.
[17] Zena K Abbas and Ahlam A Abbood (2021), The influence of incorporating recycled brick on concrete properties, 4th International Conference on Engineering Sciences (ICES 2020)
[18] 翟慰宗,磚類再生粒料混凝土高溫受熱後對抗壓強度與超音波速之影響,2011,博士論文,私立中原大學土木工程研究所
[19] 陳品勳,以混凝土塊、磁磚及紅磚製成之再生粗粒料對混凝土影響之研究,2011,碩士論文,私立中原大學土木工程研究所
[20] 營建剩餘土石方資訊服務中心-營建棄填土資訊系統
[21] 賴聰銘、藍隆寬、陳彥睿、劉光晏、廖廷睿,(2022)「新材料新工法 CETES 驗證-磊篩克細粒料應用於混凝土」,營建知訊,第 478 期,pp. 48-68。
[22] McCormac, Jack C./ Nelson, James K.,”Design of Reinforced Concrete: ACI 318-05 Code Edition”, John Wiley & Sons Inc,2005
[23] W.Ritter,“Die bauweise Hennebique,”Schweizerische Bauzeitung,33(7), 59-61,1899.
[24] E.Mörsch,“Concrete Steel Construction (translation of the 3rd German Edition of Der Eisenbetonbau by E.P.Goodrich), McGraw-Hill Book Co.,New York, pp. 368,1909
[25] A.P. Clark, ”Diagonal tension in reinforced concrete beams,”ACI Journal, Vol.48, No.10,Oct.,pp.145-15,1951
[26] Joint ACI-ASCE Committee 426,”The Shear Strength of Reinforced Concrete Members,”Journal of Structural Division, ASCE, V99, No.ST6, June, pp.1091-1187,1973.
[27] Kani, G.N.J.,”How Safe are our Reinforced concrete Beams? ”ACI Journal,Proceedings Vol.64, No3, Mar.1967,pp.128~141.
[28] Kani, G.N.J.,”Riddle of shear failure and it’s solution, ”ACI Journal,Proceedings Vol.63, No6, Jan.1966,pp.675~692.
[29] Ahmad, Shuaib H.;Khaloo A.R. & Poveda A.,”Shear Capacity of Reinforced High-Strength Concrete Beams,” ACI Journal,Proceedings Vol.83, No2, Mar.~Apr.1986,pp.297~305.
[30] H.P.J.Taylor,”Shear Strength of large Beams,”Journal of The Structure Division,ASCE,Vol98,No4,Nov.1972,pp.2473~2490.
[31] Neville, Adam M.,”A General Relation For Strength of Concrete Specimens of Different Shapes And Size,”ACI Structure Journal,Vol.60,No10,Dec 1966,pp.1095~1109.
[32] CNS1240混凝土粒料
[33] CNS61卜特蘭水泥
[34] CNS12223水淬高爐爐碴
[35] CNS3036混凝土用飛灰及天然或煆燒卜作嵐攙和物
[36] CNS12283-混凝土用化學摻料
[37] CNS1176混凝土坍度試驗法
[38] CNS1232混凝土圓柱試體抗壓強度檢驗法
[39] 國立成功大學土木工程學系工程材料實驗手冊
[40] 中國土木水利學會,「土木406-111 混凝土工程設計規範與解說」,科技圖書出版社,2022
[41] 蕭添進,張大鵬,蔡得時,楊宗叡,「再生粒料混凝土配比方法與最優選工程性質之評估研究」,中國土木水利工程學刊,第二十二卷,第四期,pp. 399–409,2010。
[42] 中國土木水利學會,「土木401-110 混凝土工程設計規範與解說」,科技圖書出版社,2011。
[43] ASTM C649 Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression1