| 研究生: |
熊明珩 Hsiung, Ming-Heng |
|---|---|
| 論文名稱: |
小鼠海馬迴中不同的訊息傳遞路徑參與在蘿特琳和順丁烯二酸鹽對抑制性逃避記憶之調節 Involvement of different signaling pathways in mouse hippocampus in the modulatory effects of rottlerin and MK-801 on inhibitory avoidance memory |
| 指導教授: |
胡書榕
Hu, Shu-Jung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
社會科學院 - 心理學系 Department of Psychology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 蘿特琳 、順丁烯二酸鹽 、腦源性神經營養因子 、抑制性逃避行為 、記憶固化 |
| 外文關鍵詞: | Rottlerin, MK-801, Inhibitory avoidance, mTOR, BDNF, Consolidation |
| 相關次數: | 點閱:151 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
創傷後壓力症候群(PTSD)是經歷過創傷事件的人有可能產生的心理疾病。然而,現今的藥物治療方式效用有限。蘿特琳(rotterlin)和順丁烯二酸鹽(MK-801)被發現具有抗憂鬱的效果。蘿特琳會抑制真核延伸因子2 (eEF2)磷酸化,順丁烯二酸鹽是NMDAR的非競爭性結抗劑,兩者皆會增加海馬迴中腦源性神經營養因子(BDNF)蛋白質表現,能減緩憂鬱症狀。更者,背側海馬中的NMDAR是跟建立抑制性逃避行為(inhibitory avoidance)的長期記憶有關。因此,本研究旨在探討蘿特琳和順丁烯二酸鹽對抑制性逃避記憶的調節作用。我們發現由腹腔注射蘿特琳會損害小鼠嫌惡性記憶的習得、固化與提取,但不影響記憶的再固化。順丁烯二酸鹽會損害嫌惡性記憶之習得,然而此記憶損害表現是因為該藥物同時影響了小鼠的電擊敏感度。順丁烯二酸鹽促進了嫌惡行記憶的固化與提取而不影響其記憶再固化。此外,將蘿特琳微量注射入小鼠的海馬迴內,結果與腹腔給藥的結果一致,能顯著地抑制記憶的習得、固化與提取的表現,同時降低小鼠海馬迴內eEF2磷酸化,促使BDNF蛋白質表現的上升。另一方面,在海馬迴注入順丁烯二酸鹽,會促進記憶習得、固化與提取。此結果指出蘿特琳與順丁烯二酸鹽是透過海馬迴影響嫌惡性記憶。順丁烯二酸鹽對於記憶的促進與mTOR的磷酸化表現增加有關,但不影響BDNF的表現。顯示出兩者對於嫌惡性記憶固化相反的影響可能是因為他們走不同的分子路徑。總結上述的實驗結果,調控BDNF與mTOR在腦中的表現量可能將成為未來治療PTSD重要的治療標的之一。
Abstract
Post-traumatic stress disorder (PTSD) is the psychopathological outcome of a traumatic event exposure. However, the current pharmalogical treatments are not effective. Rottlerin and MK-801 have previously been shown to possess antidepressive effects. The eEF2K, which phosphorylates eukaryotic elongation factor 2 (eEF2), is one of the downstream signaling molecules of the N-methyl-D-aspartic acid receptor (NMDAR). Rottlerin inhibits eukaryotic elongation factor 2 kinase (eEF2K), hence increases the levels of brain-derived neurotrophic factor (BDNF) protein in the hippocampus. Likewise, MK-801, a non-competitive antagonist of NMDAR, exerts a fast-acting antidepressive effect through the eEF2K inhibition-mediated increase of BDNF protein in the hippocampus. Furthermore, the NMDA receptors in the dorsal hippocampus are involved in the establishment of long-term memory of the inhibitory avoidance task. The inhibitory avoidance task is widely used in the preclinical research to assess aversive memory and avoidance behavior, which is one of the symptom clusters in the PTSD. Therefore, the present study aimed to investigate the modulatory effects of rottlerin and MK-801 on inhibitory avoidance memory. We first showed that systemic rottlerin impaired memory acquisition, consolidation and retrieval of the inhibitory avoidance memory, whereas had no effect on memory reconsolidation. Systemic MK-801 impaired acquisition of the same aversive memory, which was confounded by MK-801-induced increase of shock sensitivity. Intriguingly, MK-801 (0.25 mg/kg) facilitated memory consolidation and retrieval of the inhibitory avoidance memory without affecting memory reconsolidation. Moreover, the intra-hippocampal infusion of rottlerin significantly impaired memory acquisition, consolidation and retrieval of aversive memory, which was accompanied by decrease of eEF2 and increase of BDNF protein levels in the hippocampus. On the other hand, the intra-hippocampal infusion of MK-801 significantly faciliated memory acquisition, consolidation and retrieval of aversive memory. The memory facilitating effect of MK-801 is correlated with the increase of mTOR protein phosphorylation without changing BDNF levels in the hippocampus. Rottlerin and MK-801 may affected distinct signaling pathways that produced the opposite effects on IA memory consolidation.Taken together, despite having similar antidepressive function, rottlerin and MK-801 display oppositive effects on inhibitory avoidance memory, which are mediated by different signaling pathways in mouse hippocampus. Rottlerin may be a remedy for PTSD via increase of BDNF protein in the hippocampus. By contrast, MK-801 may enhance aversive memory, hence worsen PTSD symptoms through activating hippocampal mTOR signaling pathways. Our results suggest that hippocampal BDNF and mTOR signaling pathways may serve as a potential therapeutic target for PTSD.
5.Reference
Agnihotri, N. T., Hawkins, R. D., Kandel, E. R., & Kentros, C. (2004). The long-term stability of new hippocampal place fields requires new protein synthesis. Proceedings of the National Academy of Sciences of the United States of America, 101(10), 3656-3661.
Alberini, C. M., & LeDoux, J. E. (2013). Memory reconsolidation. Current Biology, 23(17), R746-R750. doi:https://doi.org/10.1016/j.cub.2013.06.046
Alonso, M., Vianna, M. R., Depino, A. M., Mello e Souza, T., Pereira, P., Szapiro, G., . . . Medina, J. H. (2002). BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus, 12(4), 551-560. doi:10.1002/hipo.10035
Anokhin, K. V., Tiunova, A. A., & Rose, S. P. (2002). Reminder effects–reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive‐avoidance task in young chicks. European Journal of Neuroscience, 15(11), 1759-1765.
Armario, A., Escorihuela, R. M., & Nadal, R. (2008). Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals. Neuroscience & Biobehavioral Reviews, 32(6), 1121-1135.
Autry, A. E., Adachi, M., Nosyreva, E., Na, E. S., Los, M. F., Cheng, P. F., . . . Monteggia, L. M. (2011). NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature, 475(7354), 91-95. doi:10.1038/nature10130
Bailey, C. H., Bartsch, D., & Kandel, E. R. (1996). Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci U S A, 93(24), 13445-13452.
Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C. J., McLauchlan, H., . . . Cohen, P. (2007). The selectivity of protein kinase inhibitors: a further update. Biochem J, 408(3), 297-315. doi:10.1042/BJ20070797
Barkus, C., McHugh, S. B., Sprengel, R., Seeburg, P. H., Rawlins, J. N., & Bannerman, D. M. (2010). Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur J Pharmacol, 626(1), 49-56. doi:10.1016/j.ejphar.2009.10.014
Benvenga, M. J., & Spaulding, T. C. (1988). Amnesic effect of the novel anticonvulsant MK-801. Pharmacol Biochem Behav, 30(1), 205-207.
Berman, R. M., Cappiello, A., Anand, A., Oren, D. A., Heninger, G. R., Charney, D. S., & Krystal, J. H. (2000). Antidepressant effects of ketamine in depressed patients. Biol Psychiatry, 47(4), 351-354.
Blundell, J., Kouser, M., & Powell, C. M. (2008). Systemic inhibition of mammalian target of rapamycin inhibits fear memory reconsolidation. Neurobiology of learning and memory, 90(1), 28-35.
Bonini, J. S., Da Silva, W. C., Bevilaqua, L. R., Medina, J. H., Izquierdo, I., & Cammarota, M. (2007). On the participation of hippocampal PKC in acquisition, consolidation and reconsolidation of spatial memory. Neuroscience, 147(1), 37-45. doi:10.1016/j.neuroscience.2007.04.013
Cestari, V., Ciamei, A., & Castellano, C. (1999). Strain-dependent effects of MK-801 on passive avoidance behaviour in mice: interactions with morphine and immobilization stress. Psychopharmacology, 146(2), 144-152.
Chen, Z. F., Fang, J. Y., Weng, Y. R., Sun, D. F., Wang, X., & Lu, R. (2006). [The effect of PKC-delta inhibitor Rottlerin on human colon cancer cell line SW1116 and its mechanism]. Zhonghua Zhong Liu Za Zhi, 28(8), 564-567.
Chhatwal, J. P., Stanek-Rattiner, L., Davis, M., & Ressler, K. J. (2006). Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nature neuroscience, 9(7), 870.
Cipriani, A., Williams, T., Nikolakopoulou, A., Salanti, G., Chaimani, A., Ipser, J., . . . Stein, D. J. (2017). Comparative efficacy and acceptability of pharmacological treatments for post-traumatic stress disorder in adults: a network meta-analysis. Psychological medicine, 1-10.
Collingridge, G. L., & Bliss, T. V. (1995). Memories of NMDA receptors and LTP. Trends Neurosci, 18(2), 54-56.
Conboy, L., Foley, A. G., O’Boyle, N. M., Lawlor, M., Gallagher, H. C., Murphy, K. J., & Regan, C. M. (2009). Curcumin-induced degradation of PKCδ is associated with enhanced dentate NCAM PSA expression and spatial learning in adult and aged Wistar rats. Biochemical pharmacology, 77(7), 1254-1265.
De Leonibus, E., Lafenetre, P., Oliverio, A., & Mele, A. (2003). Pharmacological evidence of the role of dorsal striatum in spatial memory consolidation in mice. Behav Neurosci, 117(4), 685-694.
Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry, 164(10), 1476-1488. doi:10.1176/appi.ajp.2007.07030504
Ferri, P., Cecchini, T., Ambrogini, P., Betti, M., Cuppini, R., Del Grande, P., & Ciaroni, S. (2006). alpha-Tocopherol affects neuronal plasticity in adult rat dentate gyrus: the possible role of PKCdelta. J Neurobiol, 66(8), 793-810. doi:10.1002/neu.20255
Finsterwald, C., Steinmetz, A. B., Travaglia, A., & Alberini, C. M. (2015). From memory impairment to posttraumatic stress disorder-like phenotypes: the critical role of an unpredictable second traumatic experience. Journal of Neuroscience, 35(48), 15903-15915.
Flandreau, E. I., & Toth, M. (2017). Animal Models of PTSD: A Critical Review. Curr Top Behav Neurosci. doi:10.1007/7854_2016_65
Frankland, P. W., & Bontempi, B. (2005). The organization of recent and remote memories. Nat Rev Neurosci, 6(2), 119-130. doi:10.1038/nrn1607
Gildish, I., Manor, D., David, O., Sharma, V., Williams, D., Agarwala, U., . . . Rosenblum, K. (2012). Impaired associative taste learning and abnormal brain activation in kinase-defective eEF2K mice. Learn Mem, 19(3), 116-125. doi:10.1101/lm.023937.111
Glickman, S. E. (1961). Perseverative neural processes and consolidation of the memory trace. Psychol Bull, 58, 218-233.
Guthrie, R. M., & Bryant, R. A. (2006). Extinction learning before trauma and subsequent posttraumatic stress. Psychosom Med, 68(2), 307-311. doi:10.1097/01.psy.0000208629.67653.cc
Heldt, S., Stanek, L., Chhatwal, J., & Ressler, K. (2007). Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Molecular psychiatry, 12(7), 656.
Herry, C., Ciocchi, S., Senn, V., Demmou, L., Muller, C., & Luthi, A. (2008). Switching on and off fear by distinct neuronal circuits. Nature, 454(7204), 600-606. doi:10.1038/nature07166
Hirsch, S. J., Regmi, N. L., Birnbaum, S. G., & Greene, R. W. (2015). CA 1‐specific deletion of NMDA receptors induces abnormal renewal of a learned fear response. Hippocampus, 25(11), 1374-1379.
Hong-Brown, L. Q., Brown, C. R., Huber, D. S., & Lang, C. H. (2008). Lopinavir impairs protein synthesis and induces eEF2 phosphorylation via the activation of AMP-activated protein kinase. J Cell Biochem, 105(3), 814-823. doi:10.1002/jcb.21882
Huang, M., Tang, S. N., Upadhyay, G., Marsh, J. L., Jackman, C. P., Srivastava, R. K., & Shankar, S. (2014). Rottlerin suppresses growth of human pancreatic tumors in nude mice, and pancreatic cancer cells isolated from Kras(G12D) mice. Cancer Lett, 353(1), 32-40. doi:10.1016/j.canlet.2014.06.021
Izquierdo, I., Quillfeldt, J. A., Zanatta, M. S., Quevedo, J., Schaeffer, E., Schmitz, P. K., & Medina, J. H. (1997). Sequential role of hippocampus and amygdala, entorhinal cortex and parietal cortex in formation and retrieval of memory for inhibitory avoidance in rats. Eur J Neurosci, 9(4), 786-793.
Kessler, R. C., Sonnega, A., Bromet, E., Hughes, M., & Nelson, C. B. (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry, 52(12), 1048-1060.
Kim, M., & McGaugh, J. L. (1992). Effects of intra-amygdala injections of NMDA receptor antagonists on acquisition and retention of inhibitory avoidance. Brain Res, 585(1-2), 35-48.
Lanuza, E., Moncho-Bogani, J., & Ledoux, J. E. (2008). Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala. Neuroscience, 155(3), 959-968. doi:10.1016/j.neuroscience.2008.06.028
LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cell Mol Neurobiol, 23(4-5), 727-738.
LeDoux, J. E. (2000). Emotion circuits in the brain. Annu Rev Neurosci, 23, 155-184. doi:10.1146/annurev.neuro.23.1.155
Lee, J. L., Everitt, B. J., & Thomas, K. L. (2004). Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science, 304(5672), 839-843.
Li, N., Lee, B., Liu, R. J., Banasr, M., Dwyer, J. M., Iwata, M., . . . Duman, R. S. (2010). mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science, 329(5994), 959-964. doi:10.1126/science.1190287
Li, S. X., Zhang, J. C., Wu, J., & Hashimoto, K. (2014). Antidepressant Effects of Ketamine on Depression-like Behavior in Juvenile Mice after Neonatal Dexamethasone Exposure. Clin Psychopharmacol Neurosci, 12(2), 124-127. doi:10.9758/cpn.2014.12.2.124
Liang, K.-C. (2009). Involvement of the amygdala and its connected structures in formation and expression of inhibitory avoidance memory: issues and implications. Chin J Physiol, 52, 196-214.
Liang, K. C., Chen, H. C., & Chen, D. Y. (2001). Posttraining infusion of norepinephrine and corticotropin releasing factor into the bed nucleus of the stria terminalis enhanced retention in an inhibitory avoidance task. Chin J Physiol, 44(1), 33-43.
Liang, K. C., Chen, L. L., & Huang, T. E. (1995). The role of amygdala norepinephrine in memory formation: involvement in the memory enhancing effect of peripheral epinephrine. Chin J Physiol, 38(2), 81-91.
Liang, K. C., Wang, X., & Li, T. H. (2009). Robust discovery of periodically expressed genes using the laplace periodogram. BMC Bioinformatics, 10, 15. doi:10.1186/1471-2105-10-15
Liao, T. Y., Tzeng, W. Y., Wu, H. H., Cherng, C. G., Wang, C. Y., Hu, S. S., & Yu, L. (2016). Rottlerin impairs the formation and maintenance of psychostimulant-supported memory. Psychopharmacology (Berl), 233(8), 1455-1465. doi:10.1007/s00213-016-4251-8
Litvin, O., & Anokhin, K. (2000). Mechanisms of memory reorganization during retrieval of acquired behavioral experience in chicks: the effects of protein synthesis inhibition in the brain. Neuroscience and behavioral physiology, 30(6), 671-678.
Lorenzini, C. A., Baldi, E., Bucherelli, C., Sacchetti, B., & Tassoni, G. (1996). Role of dorsal hippocampus in acquisition, consolidation and retrieval of rat's passive avoidance response: a tetrodotoxin functional inactivation study. Brain Res, 730(1-2), 32-39.
Lu, Y., Christian, K., & Lu, B. (2008). BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiology of learning and memory, 89(3), 312-323.
Manion, S. T., Gamble, E. H., & Li, H. (2007). Prazosin administered prior to inescapable stressor blocks subsequent exaggeration of acoustic startle response in rats. Pharmacology Biochemistry and Behavior, 86(3), 559-565.
Maren, S. (1999). Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci, 22(12), 561-567.
Maren, S., & Fanselow, M. S. (1995). Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J Neurosci, 15(11), 7548-7564.
Mathis, C., Lehmann, J., & Ungerer, A. (1992). The selective protein kinase C inhibitor, NPC 15437, induces specific deficits in memory retention in mice. European journal of pharmacology, 220(1), 107-110.
McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci, 107(1), 3-22.
McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science, 153(3742), 1351-1358.
McGaugh, J. L. (2002). Memory consolidation and the amygdala: a systems perspective. Trends Neurosci, 25(9), 456.
Milad, M. R., Orr, S. P., Lasko, N. B., Chang, Y., Rauch, S. L., & Pitman, R. K. (2008). Presence and acquired origin of reduced recall for fear extinction in PTSD: results of a twin study. J Psychiatr Res, 42(7), 515-520. doi:10.1016/j.jpsychires.2008.01.017
Milekic, M. H., & Alberini, C. M. (2002). Temporally graded requirement for protein synthesis following memory reactivation. Neuron, 36(3), 521-525.
Mondadori, C., & Weiskrantz, L. (1993). NMDA receptor blockers facilitate and impair learning via different mechanisms. Behav Neural Biol, 60(3), 205-210.
Mondadori, C., Weiskrantz, L., Buerki, H., Petschke, F., & Fagg, G. (1989). NMDA receptor antagonists can enhance or impair learning performance in animals. Experimental Brain Research, 75(3), 449-456.
Morgan, M. A., & LeDoux, J. E. (1995). Differential contribution of dorsal and ventral medial prefrontal cortex to the acquisition and extinction of conditioned fear in rats. Behav Neurosci, 109(4), 681-688.
Morioka, N., Yoshida, Y., Nakamura, Y., Hidaka, N., Hisaoka-Nakashima, K., & Nakata, Y. (2013). The regulation of exon-specific brain-derived neurotrophic factor mRNA expression by protein kinase C in rat cultured dorsal root ganglion neurons. Brain Res, 1509, 20-31. doi:10.1016/j.brainres.2013.03.015
Nader, K. (2003). Memory traces unbound. Trends Neurosci, 26(2), 65-72. doi:10.1016/S0166-2236(02)00042-5
Nader, K., Schafe, G. E., & LeDoux, J. E. (2000). The labile nature of consolidation theory. Nat Rev Neurosci, 1(3), 216-219. doi:10.1038/35044580
Nakagawa, Y., & Iwasaki, T. (1996). Ethanol-induced state-dependent learning is mediated by 5-hydroxytryptamine3 receptors but not by N-methyl-D-aspartate receptor complex. Brain Res, 706(2), 227-232.
Nilsson, M., Hansson, S., Carlsson, A., & Carlsson, M. L. (2007). Differential effects of the N-methyl-d-aspartate receptor antagonist MK-801 on different stages of object recognition memory in mice. Neuroscience, 149(1), 123-130. doi:10.1016/j.neuroscience.2007.07.019
Orr, S. P., & Roth, W. T. (2000). Psychophysiological assessment: clinical applications for PTSD. J Affect Disord, 61(3), 225-240.
Peri, T., Ben-Shakhar, G., Orr, S. P., & Shalev, A. Y. (2000). Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder. Biol Psychiatry, 47(6), 512-519.
Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci, 106(2), 274-285.
Rattiner, L. M., Davis, M., French, C. T., & Ressler, K. J. (2004). Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. Journal of Neuroscience, 24(20), 4796-4806.
Romanski, L. M., & LeDoux, J. E. (1993). Information cascade from primary auditory cortex to the amygdala: corticocortical and corticoamygdaloid projections of temporal cortex in the rat. Cereb Cortex, 3(6), 515-532.
Rudy, J., Huff, N., & Matus-Amat, P. (2004). Understanding contextual fear conditioning: insights from a two-process model. Neuroscience & Biobehavioral Reviews, 28(7), 675-685.
Salinska, E., Bourne, R. C., & Rose, S. P. (2004). Reminder effects: the molecular cascade following a reminder in young chicks does not recapitulate that following training on a passive avoidance task. European Journal of Neuroscience, 19(11), 3042-3047.
Seligman, M. E., & Maier, S. F. (1967). Failure to escape traumatic shock. Journal of experimental psychology, 74(1), 1.
Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-Traumatic Stress Disorder. N Engl J Med, 376(25), 2459-2469. doi:10.1056/NEJMra1612499
Singh, B. N., Kumar, D., Shankar, S., & Srivastava, R. K. (2012). Rottlerin induces autophagy which leads to apoptotic cell death through inhibition of PI3K/Akt/mTOR pathway in human pancreatic cancer stem cells. Biochem Pharmacol, 84(9), 1154-1163. doi:10.1016/j.bcp.2012.08.007
Soltoff, S. P. (2007). Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta. Trends Pharmacol Sci, 28(9), 453-458. doi:10.1016/j.tips.2007.07.003
Taha, E., Gildish, I., Gal-Ben-Ari, S., & Rosenblum, K. (2013). The role of eEF2 pathway in learning and synaptic plasticity. Neurobiol Learn Mem, 105, 100-106. doi:10.1016/j.nlm.2013.04.015
Taubenfeld, S. M., Milekic, M. H., Monti, B., & Alberini, C. M. (2001). The consolidation of new but not reactivated memory requires hippocampal C/EBPbeta. Nat Neurosci, 4(8), 813-818. doi:10.1038/90520
Venable, N., & Kelly, P. H. (1990). Effects of NMDA receptor antagonists on passive avoidance learning and retrieval in rats and mice. Psychopharmacology (Berl), 100(2), 215-221.
Weiskrantz, L., & Mondadori, C. (1991). MK-801 can facilitate passive avoidance memory when retention is not present in control animals, and can fail to facilitate when it is present. Psychopharmacology, 105(2), 145-150.
Yehuda, R., & LeDoux, J. (2007). Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron, 56(1), 19-32. doi:10.1016/j.neuron.2007.09.006
Zanatta, A. R., & Chambouleyron, I. I. (1996). Absorption edge, band tails, and disorder of amorphous semiconductors. Phys Rev B Condens Matter, 53(7), 3833-3836.
Zanatta, M. S., Schaeffer, E., Schmitz, P. K., Medina, J. H., Quevedo, J., Quillfeldt, J. A., & Izquierdo, I. (1996). Sequential involvement of NMDA receptor-dependent processes in hippocampus, amygdala, entorhinal cortex and parietal cortex in memory processing. Behav Pharmacol, 7(4), 341-345.
Zhang, Y., Fukushima, H., & Kida, S. (2011). Induction and requirement of gene expression in the anterior cingulate cortex and medial prefrontal cortex for the consolidation of inhibitory avoidance memory. Mol Brain, 4, 4. doi:10.1186/1756-6606-4-4
Zhao, W.-Q., Sedman, G. L., Gibbs, M. E., & Ng, K. T. (1994). Effect of PKC inhibitors and activators on memory. Behavioural brain research, 60(2), 151-160.
校內:2023-08-31公開