| 研究生: |
郭伯軒 Kuo, Po-hsuan |
|---|---|
| 論文名稱: |
微熱管熱傳性能之數值分析 Numerical Analysis of the Heat Transfer Characteristics of Micro Heat Pipes |
| 指導教授: |
楊天祥
Yang, Tian-Shiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 熱傳 、微熱管 、數值分析 |
| 外文關鍵詞: | numerical analysis, heat transfer, micro heat pipe |
| 相關次數: | 點閱:80 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微熱管可應用在電子晶片上,使晶片溫度較為平均。本研究為建立一分析穩態時V型溝槽微熱管的熱傳模型,利用質量、動量、能量守恆式和Young-Laplace方程式,可以描述微熱管中流體蒸發與冷凝的行為,並可預測微熱管的最大熱傳量及熱傳係數。在本文中我們先分析流體物理性質對熱管效能的影響,其中提高表面張力係數、蒸發熱、密度與降低流體黏滯係數會增加微熱管最大熱傳量;提高流體與熱管基材間熱傳係數、流體與蒸汽間熱傳係數則會使微熱管的等效熱傳係數變大。在微熱管溝槽幾何設計方面,根據本文中所設定之參數,溝槽開口角度約在33度時微熱管有最大的熱傳量,而較小的熱管傾斜角度、微熱管長度與較大的溝槽深度也會提高微熱管最大熱傳量。
Micro heat pipes can be used in an electronic chip to render its temperature distribution more uniform. In this thesis, based on the Young-Laplace equation and conservation laws for mass, momentum, and energy transport, we construct a one-dimensional thermofluid model for analyzing the steady-state flow and heat transfer characteristics of micro heat pipes consisting of V-shaped micro grooves. The model is then used to calculate the flow and evaporation/condensation of the working fluid in a micro heat pipe, and to calculate the critical heat input beyond which the heat pipe would dry out. It is found that the critical heat input can be increased by increasing the surface tension coefficient, thermal conductivity and density of the working fluid, but decreased if the viscosity of the working fluid increases. Moreover, the equivalent thermal conductivity of a micro heat pipe increases with the convection heat transfer coefficients on the liquid-substrate and liquid-vapor interfaces. We have also found that, for the case studied in this thesis, the critical heat input obtains a maximum when the apex angle of the grooves is around 33 degrees.
[1] Cotter, T.P., 1984. Principles and prospects of micro heat pipes. In: Proceedings of the Fifth Int. Heat pipe Conference, Tsukuba, Japan,
pp.328-332.
[2] Babin, B. R., Peterson, G. P., Wu. D., 1990. Steady state modeling and testing of a micro heat pipe. J. Heat Transfer 112,595-601.
[3] Itoh, A., and Polasek, F., 1990. Development and Application of Micro Heat Pipe, In: Proceedings of the 7th Int. Heat pipe Conference, Minsk,
Belarus, 295-310.
[4] Wu, D., Peterson, G.P., 1991. Investigation of the transient
thermodynamics of micro heat pipe. J. Heat Transfer 112, 595-601.
[5] Swanson, L. W., Peterson, G. P., 1995. The interfacial thermodynamics of
micre heat pipes. J. Heat Transfer 115, 195-201.
[6] Xu, X., Carey, V. P.,1990. Evaporation from microgrooved surface-an approximate heat transfer model and its comparison with experimental
data. J. Thermophys. 4, 512-520.
[7] Stephan, P. C., Busse, C. A., 1992. Analysis of heat transfer coefficient of grooved heat pipe evaporator walls. Int. J. Heat Mass Transfer 35,
383-391.
[8] Khrustalev, D., Faghri, A., 1994. Thermal analysis of a micro heat pipe. J.
Heat transfer 116, 189-198.
[9] Longtin, J. P., Badran, B., Gerner, F. M., 1994. A One-Dimensional Model of a Micro Heat Pipe During Steady-State Operation. J. Heat Transfer, Vol. 116, pp. 709-715.
[10] Peterson, G. P., Ma, H. B., 1996. Theoretical analysis of the maximum heat transport in triangular grooves: a study od idealized micro heat pipe.
J. Heat Transfer 188, 731-739.
[11] Suman, B., De, S., DasGupta, S., 2005. A model of the capillary limit of a micro heat pipe and prediction of dry-out length. Int. J. Heat Fluid
Flow 26, 495-505.
[12] Probstein, R. F., 1994. Physicochemical Hydrodynamics: An
Introduction, 2ed ed.
[13] DasGupta, S., Schonberg, J. A., Kim, I. Y., Wayner, P. C., 1993. Use of augmented Young-Laplace equation to model equilibrium and evaporation extended menisci. J. Colloid Interface Sci. 157, 332-342.
[14] DasGupta, S., Schonberg, J. A., Wayner, P. C., 1993. Investigation of an evaporation extended meniscus based on the augmented Young-Laplace
equation. J. Heat Transfer 115, 201-208.
[15] Anand, S., De, S., DasGupta, S., 2002. Experimental and theoretical study of axial dryout point for evaporation from V-shaped microgrooves.
Int. J. Heat Mass Transfer 45, 1535-1543.
[16] Suman, B., De, S., DasGupta, S., 2005. Transient modeling of micro-grooved heat pipe. Int. J. Heat Mass Transfer 48, 1633-1646.
[17] Suman, B., Hoda, N., 2005.Effect of Variations in thermophysical properties and design parameters on the performance of a V-Shaped micro grooved heat pipe. Int. J. Heat Mass Transfer 48, 22090-2101.
[18] 日本熱管技術協會編, 依日光譯, 1986, 熱管技術理論實務(HEAT
PIPE TECHNOLOGY). 復漢出版社.
[19] David, R. D., Henry, V. K., 1994, CRC Handbook of Thermophysical
and Thermochemical Data. CRC Press.
[20] http://www.dynatron-corp.com
[21] http://www3.thermacore.com
[22] Cengel, 2003, HEAT TRANSFER : a practical approach. 2nd ed.
McGRAW. HILL
[23] Robert, Alan, Philip, 2002, Introduction to FLUID MECHANICS. 6th ed.
JONE WILLY & SONS, INC.