| 研究生: |
顏志仲 Yen, Chih-Chung |
|---|---|
| 論文名稱: |
基因演算於光纖陀螺儀之模擬與優化 Simulation and Optimization in Fiber-optic Gyroscopes Using Genetic Algorithm |
| 指導教授: |
羅裕龍
Lo, Yu-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 光纖陀螺儀 、去偏振器 、史托克斯參數 、基因演算法 |
| 外文關鍵詞: | FOG, Depolarizer, Stokes Parameters, Genetic Algorithm |
| 相關次數: | 點閱:95 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光纖陀螺儀有高敏感度的優點可應用於導航。然而,使用單模光纖光圈的光纖陀螺儀容易受到環境的影響造成訊號消逝。除此之外,不完美的偏振片和融接角度的誤差會造成偏振誤差。因此,利用高消偏的偏振片以及全光纖式的去偏振光纖陀螺儀可以有效的幫助降低偏振誤差及訊號消逝。在本研究中,作者利用基因演算法去找出光纖陀螺儀中最佳的結構設計,其結果顯示找到的最小誤差大概為10-3 角度/小時。作者同時也提出一個使用史托克參數的方法去設計一個新的架構。其架構設計將單模光纖光圈利用史托克參數的量測方法將其光纖變成像是在空氣中傳導,在瓊斯矩陣就等同於單位矩陣。將其架構放入光纖陀螺儀中,其結果顯示誤差可降到10-4角度/小時左右。由模擬結果顯示,新的架構可以達到去偏振光纖陀螺儀的效果或者是更好。因此,此結果顯示了此新架構的可能性。
Fiber optic gyroscopes (FOGs) have the advantage of high sensitivity and can be used for navigation. However, the FOGs made use of the single-mode (SM) fibers can be easily affected by the environment which causes the signal fading of the light. Also, the imperfect polarizer and angles of misalignments cause the polarization errors. Use of the high-extinction-ratio fiber polarizer in all-fiber depolarized gyroscopes have significantly aided in constructing such gyroscopes to minimize unmeasurably low polarization errors and signal fading.
In this study, the author uses the method of genetic algorithm to find the optimal structures of the depolarized FOG which the minimal bias error can be found at about 10-3deg/hour. The author also proposes a new structure that uses the Stokes parameter method for designing a free-space unit matrix of the SM fiber coil. The bias error can be down to the order of 10-4 deg/hour. The results show that the new structure may have the same stability as the depolarized FOG or even better. It shows that using free-space unit matrix of the SM fiber coil for FOG is feasible.
[1]安 伯 托 . 艾可(Umberto Eco)/ 謝瑤玲譯 , 傅科擺/Foucault's Pendulum,皇冠出版社,台北,民81。
[2]http://en.wikipedia.org/wiki/Gyroscope.
[3]Sagnac, G., ”L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme”, Comptes rendus de l’Academie des Sciences, Vol. 95, 1913, pp. 708-710.
[4]Michelson, A. A., and Gale, H. G., "The Effect of the Earth’s Rotation on the Velocity of Light," Journal of Astrophysics, Vol. 61, 1925, pp. 401.
[5]Rosenthal, A. H., "Regenerative Circulatory Multiple-Beam Interferometry for the Study of Light-Propagation Effects," J.O.S.A., Vol. 52, 1962, pp. 1143-1148.
[6]Macek, W. M., and Davis D. T. M., "Rotation-Rate Sensing With Travelling-Wave Ring Lasers," Applied Physics Letters, Vol. 2, 1963, pp. 67-68.
[7]Ezekiel, S., and Knausenberger, G. E., eds., "Laser Inertial Rotation Sensors," SPIE Proceedings, Vol. 157, 1978.
[8]Chow, W. W., Gea-Banacloche, J., Petrotti, L. M., Sanders, V. E., Schleich, W., and Scully, M. O., "The Ring Laser Gyro," Review of Modern Physics, Vol. 57, 1985, pp. 361.
[9]Pircher, G., and Hepner, G., "perfectionnements aux dispositifs du type gyrometre interferometrique a laser," French patent 1.563.720, 1967.
[10]Vali, V., and Shorthill, R. W., "Fiber Ring Interferometer," Applied Optics, Vol. 15, 1976, pp.1099-1100.
[11]Berg, R. A., Lefevre, H. C., and Shaw, H. J., "All-Single-Mode Fiber-Optic Gyrpscope With Long-Term Stability," Optics Letters, Vol. 6, 1981, pp. 502-504.
[12]Lefevre, H., The Fiber-Optic Gyroscope, Artech House, Boston London, 1993.
[13]Bohm, K., Marten, P., Petermann, K., Weidel, E., and Ulrich, R., “Low-drift fibre gyro using superluminescent diode,” Electron. Lett., vol. 17, 1981, pp. 352-353.
[14]Liu, R. Y., El-Wailly, T. F., and Dankwort, R. C., “Results of Honeywell first-generation, high performance interferometric fiber optic gyroscope,” SPIE Proc., vol. 1585, 1991, pp. 262–275.
[15]Cordova, A., Patterson, R., Rahu, J., Lam, L., and Rozelle, D., “Progress in navigation grade FOG performance,” SPIE Proc., vol. 2837, 1996, pp. 207–217.
[16]Szafraniec, B. and Blake, J., “Polarization modulation errors in all-fiber depolarized gyroscopes,” Journal of Lightwave Technology, Vol. 12, 1994, pp. 1679–1684.
[17]Szafraniec, B., Feth, J., Bergh, R., and Blake, J., “Performance improvements in depolarized fiber gyros,” SPIE Proc. Fiber Optic and Laser Sensors XIII, vol. 2510, 1995, pp. 37–48.
[18]Rashleigh, S. C., Burns, W. K., Moeller, R. P., and Ulrich, R., "Polarization Holding in Birefringenct Single-Mode Fibers," Optics Letters, Vol. 7, 1982, pp. 40-42.
[19]Bohm, K., Marten, P., Petermann, K., Weidel, E., and Ulrich, R., "Low-drift fibre gyro using a superluminescent diode," Electron. Lett., Vol. 17, 1981, pp. 352-353.
[20]Ezekiel, S., Davis, J. L., and Hellwarth, R. W., "Intensity Dependent Nonreciprocal Phase Shift in a Fiberoptic Gyroscope." Springer Series in Optical Science, Vol. 32, 1982, pp. 332-336.
[21]Szafraniec, B. and Sanders, G. A., “Theory of polarization evolutionin interferometric fiber-optic depolarized gyros,” Journal of Lightwave Technology, Vol. 17, 1999, pp. 579–590.
[22]Suchosky, P. G., Findakly, T. K., and Leonberger, F. L., “LiNbO3 Integrated Optical Components for Fiber-Optic Gyroscope,” SPIE Proceedings, Vol. 993, 1988, pp. 240-243.
[23]Post, E. J., ”Sagnac Effect,” Review of Modern Physics, Vol. 39, 1967, pp. 475-494.
[24]Arditty, H. J. and Lefevre, H. C., “Sagnac Effect in Fiber Gyroscopes,” Optics Letters, Vol. 6, 1981, pp. 401-403.
[25]Leeb, W. R., Schiffner, G., and Scheiterer, E., “Optical Fiber Gyroscopes: Sagnac or Fizeau Effect,” Applied Optics, Vol. 18, 1979, pp. 1293-1259.
[26]Martin, J. M., and Winkler, J. T., "Fiber-Optic Laser Gyro Signal Detection and Processing Technique." SPIE Processings, Vol. 139, 1978, pp. 98-102.
[27]Martin, J. M., Modeling an interferometric Fiber Optic Gyroscope, NAVAL AIR WARFARE CENTER WEAPONS DIVISION CHINA LAKE, CA 93555-6100.
[28]Qiu, T., Sanders, S. J., Mosor, S., and Sanders, G. A., 2010, ”Bias-instability reduction in fiber optic syroscopes,” U. S. Patent 20100033729.
[29]Kintner, E. C., “Polarization Control un Optical-Fiber Gyroscopes,” OPT. Lett., Vol. 6, 1981, pp. 154-156.
[30]Gradshteyn, I. S. and Ryzhik, I. M., “Table of integrals, Series, and products,” ed. by Alan jeffrey. 5th ed. Boston, Academic Press, 1994, pp. 514.
[31]Cheng, H. C. and Lo, Y. L., “The Synthesis of Multiple Parameters of Arbitrary FBGs Via a Genetic Algorithm and Two Thermally Modulated Intensity Spectra,” J. Light. Tech., Vol. 23, 2005, pp. 2158.
[32]Yu, T. C. and Lo, Y. L., “A novel heterodyne polarimeter for the multiple-parameter measurements of twisted nematic liquid crystal cell using a genetic algorithm approach,” J. Light. Tech., Vol.25, 2007, pp. 946-951.
[33]Lin, W. L., Yu, T. C. Lo, Y. L., and Lin, J. F., “A hybrid approach for measuring the parameters of twisted-nematic liquid crystal cells utilizing the stokes parameter method and a genetic algorithm,” J. Light. Tech., Vol.27, 2009, pp. 4136-4144.
[34]Michalewicz, Z., Genetic Algorithm + Data Structure= Evolution Programs, (Springer-Verlag, New York , 1994).
[35]<http://www.meadowlark.com>.
[36]Khoo, I. C. and Simoni, F., Physics of Liquid Crystalline Materials (Gorden and Breach Science Publishers, 1991), Chap. 13.
[37]Goldner, L. S., Fasolka, M. J., Nougier, S., Nguyen, H. P., Bryant, G. W., Hwang, J., Weston, K. D., Beers, K. L., Urbas, A., and Thomas, E. L., “Fourier analysis near-field polarimetry for measurement of local optical properties of thin films,” Appl. Optics, Vol. 42, 2003, pp. 3864-3881.
[38]Chen, P. C., Lo, Y. L., Yu, T. C., Lin, J. F., and Yang, T. T., “Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters,” Opt. Exp., Vol. 17, 2009, pp. 15860-15884.
校內:2020-12-31公開