簡易檢索 / 詳目顯示

研究生: 方彥涵
Fang, Yan-Han
論文名稱: 以葉枕表現基因的比較基因體分析探討含羞草屬葉片快速運動之演化模式
Investigate the evolutionary patterns of pulvinus-expressed genes on rapid movement of Mimosa leaves by comparative genomics
指導教授: 黃兆立
Huang, Chao-Li
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物與微生物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: 含羞草葉枕觸發運動RNA-Seq比較基因體學正向天擇
外文關鍵詞: Mimosa, pulvinus, seismonastic movement, RNA-Seq, comparative genomics, positive selection
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多植物為了適應周圍環境,發展出了不同的運動方式,其中可以簡單分為快速的觸發運動 (seismonastic movement) 以及緩慢的睡眠運動 (nyctinastic movement) 。豆科的含羞草屬 (Mimosa) 是一個同時擁有這兩種運動能力的典型植物,其運動器官—葉枕藉由改變伸細胞 (extensor cells) 以及屈細胞 (flexor cells) 的體積驅使葉片運動。由於含羞草屬物種間具有快速運動能力之差異,顯示其基因體差異必然藏有調控觸發運動速率的演化足跡。因此,本研究利用比較基因體分析探討含羞草 (M. pudica) 、刺軸含羞木 (M. pigra) 、美洲含羞草 (M. diplotricha) 以及 M. casta 這四種具有不同運動速率之物種的葉枕表現基因,試著找出物種間序列變異與快速運動差異之關聯性;並利用與阿拉伯芥與五個豆科物種之已發表基因體資料作比較,以檢驗基因體中受到正向天擇影響的基因。本研究結果支持葉片運動速率較快的 M. pudica 與 M. casta 之親緣關係較相近。相對於與其他植物類群共有的基因群,含羞草屬特有的同源基因顯現最高的同義置換率,可能歸因於這些基因來自近代基因複製,較不受天擇壓力所影響。有趣的是,這群基因中為正向天擇基因的比例也最高 (36%) ,顯示這些基因可能發展出新功能 (neofunctionalization) 影響,例如在具觸發運動能力之葉枕中大量表現的機械式離子通道 MSL10 之同源基因。 此外, GO (gene ontology) 分析結果顯示含羞草屬特有同源基因中的正向天擇基因有許多與運動相關之基因,如 VDCA1 。綜合以上結果,本研究推測含羞草屬分支出現後演化出之基因可能為影響快速運動之重要指標,未來將進一步利用基因剔除方式驗證這些基因是否真正參與在含羞草屬快速運動。

    Some plants perform seismonastic (rapid) or nyctinastic (slow) movements. Mimosa is a classic genus that has both abilities. The rapid movement of Mimosa is driven by pulvinus with asymmetrical volume changes of flexor and extensor motor cells. Mimosa has more than 500 species showing different seismonastic motility. However, little is known on the genetic variations associated with the evolution of rapid movement. Hence, we conducted comparative transcriptomics on the pulvini of four Mimosa species, M. pudica, M. diplotricha, M. pigra, and M. casta, which display different leaf sensitivity to touching. Additionally, Arabidopsis thaliana and five legumes with published genome information were included. The phylogenetic tree reconstructed by pulvinus-expressed genes supported the sister relationship between M. pudica and M. casta. In addition, we found the orthologous genes shared only by Mimosa species (‘Mimosa’) have higher synonymous substitution rate, probably due to relaxed selections on recently duplicated genes. Nevertheless, the ‘Mimosa’ group revealed the highest proportion of positively selected genes. The results suggested that these duplicated genes served as a likely target for neofunctionalization, particularly a gene homologous to mechanosensitive anion channel MSL10. The MSL10 homolog also showed drastic increase of the expression level in seismonastic pulvini. GO analysis indicated some positively selected genes of ‘Mimosa’ were enriched in movement-related functions, such as VDAC1. In conclusion, our analyses suggested the genes evolved after the emergence of Mimosa lineage are likely to play important roles in the innovation of rapid movement. In the future, corresponding knockout mutants will be generated to prove the expectation.

    中文摘要 I EXTENDED ABSTRACT II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 縮寫 IX 壹、緒論 1 一、關於快速運動 1 二、含羞草屬植物的快速運動 2 三、含羞草屬親緣與快速運動之演化 3 四、其他近緣物種的快速運動之演化 4 五、本文研究目的 6 貳、材料與方法 7 一、實驗材料 7 二、實驗方法 9 三、分析方法 13 參、結果 17 一、選殖含羞草屬中的 GORK 與 MSL10 基因 17 二、含羞草屬轉錄體組裝結果 18 三、含羞草屬與其它豆科之親緣關係 20 四、直系同源基因群分析 22 五、含羞草基因表現分析 22 肆、討論 25 一、含羞草屬與豆科植物同源基因之演化模式 25 二、含羞草屬內序列差異與葉片運動能力之關聯性 27 三、 可能參與觸發運動演化過程之葉枕表現基因 29 伍、結論 32 陸、參考文獻 33 附錄 40

    Assis, R., & Bachtrog, D. (2013). Neofunctionalization of young duplicate genes in Drosophila. Proceedings of the National Academy of Sciences, 110(43), 17409–17414. https://doi.org/10.1073/pnas.1313759110
    Azani, N.et al. (2017). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny – The Legume Phylogeny Working Group (LPWG). Taxon, 66(1), 44–77. https://doi.org/10.12705/661.3
    Basu, D. et al. (2020). Interactions between the N-and C-termini of mechanosensitive ion channel AtMSL10 are consistent with a three-step mechanism for activation. Journal of Experimental Botany. https://doi.org/10.1101/726521
    Bray, N. L. et al. (2016). Near-optimal probabilistic RNA-seq quantification. Nature Biotechnology, 34(5), 525–527. https://doi.org/10.1038/nbt.3519
    Chase, M. W. et al. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20. https://doi.org/10.1111/boj.12385
    Chung, H. S. et al. (2008). Regulation and Function of Arabidopsis JASMONATE ZIM -Domain Genes in Response to Wounding and Herbivory. Plant Physiology, 146(3), 952–964. https://doi.org/10.1104/pp.107.115691
    Daram, P. (1997). Tetramerization of the AKT1 plant potassium channel involves its C-terminal cytoplasmic domain. The EMBO Journal, 16(12), 3455–3463. https://doi.org/10.1093/emboj/16.12.3455
    Ehrhardt, T. et al. (1997). Association of plant K+ in channels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Letters, 409(2), 166–170. https://doi.org/10.1016/S0014-5793(97)00502-4
    Eisner, T. (1981). Leaf folding in a sensitive plant: A defensive thorn-exposure mechanism? Proceedings of the National Academy of Sciences of the United States of America, 78(1), 402–404.
    Emms, D. M., & Kelly, S. (2019). OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biology, 20(1), 238. https://doi.org/10.1186/s13059-019-1832-y
    Escalante-Pérez, M. et al. (2014). Mechano-Stimulation Triggers Turgor Changes Associated with Trap Closure in the Darwin Plant Dionaea muscipula. Molecular Plant, 7(4), 744–746. https://doi.org/10.1093/mp/sst169
    Fleurat-Lessard, P. et al. (1995). Absence of plasma membrane H+-ATPase in plasmodesmata located in pit-fields of the young reactive pulvinus of Mimosa pudica L. Protoplasma, 188(3–4), 180–185. https://doi.org/10.1007/BF01280369
    Fleurat-Lessard, P. et al. (1997). Distribution and Activity of the Plasma Membrane H+- ATPase in Mimosa pudica L. in Relation to lonic Fluxes and Leaf Movements’. 8.
    Grabherr, M. G. et al. (2011). Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883
    Grunewald, W. et al. (2009). Expression of the Arabidopsis jasmonate signalling repressor JAZ1 / TIFY10A is stimulated by auxin. EMBO Reports, 10(8), 923–928. https://doi.org/10.1038/embor.2009.103
    Haas, B. J. et al. (2013). De novo transcript sequence reconstruction from RNA-Seq: Reference generation and analysis with Trinity. Nature Protocols, 8(8). https://doi.org/10.1038/nprot.2013.084
    Harmer, S. L. (2009). The Circadian System in Higher Plants. Annual Review of Plant Biology, 60(1), 357–377. https://doi.org/10.1146/annurev.arplant.043008.092054
    Hedrich, R. et al. (2016). Electrical Wiring and Long-Distance Plant Communication. Trends in Plant Science, 21(5), 376–387. https://doi.org/10.1016/j.tplants.2016.01.016
    Hodick, D., & Sievers, A. (1988). The action potential of Dionaea muscipula Ellis. Planta, 174(1), 8–18. https://doi.org/10.1007/BF00394867
    Huang, C. L. et al. (2015). Ecological genomics in Xanthomonas: The nature of genetic adaptation with homologous recombination and host shifts. BMC Genomics, 16(1), 188. https://doi.org/10.1186/s12864-015-1369-8
    Kawaguchi, M. (2003). SLEEPLESS, a gene conferring nyctinastic movement in legume. Journal of Plant Research, 116(2), 151–154. https://doi.org/10.1007/s10265-003-0079-5
    Kurenda, A. et al. (2019). Insect-damaged Arabidopsis moves like wounded Mimosa pudica. Proceedings of the National Academy of Sciences, 116(51), 26066–26071. https://doi.org/10.1073/pnas.1912386116
    Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
    Larkin, M. A. et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
    Levin, D. A. (1976). The Chemical Defenses of Plants to Pathogens and Herbivores. Annual Review of Ecology and Systematics, 7(1), 121–159. https://doi.org/10.1146/annurev.es.07.110176.001005
    Li, Y. et al. (2020). Comparative population genomics reveals genetic divergence and selection in lotus, Nelumbo nucifera. BMC Genomics, 21(1), 146. https://doi.org/10.1186/s12864-019-6376-8
    Lin, K., Zhao, H., Gan, S., & Li, G. (2019). Arabidopsis ELF4-like proteins EFL1 and EFL3 influence flowering time. Gene, 700, 131–138. https://doi.org/10.1016/j.gene.2019.03.047
    Lotkowska, Magda E. et al. (2015). The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiology, pp.00605.2015. https://doi.org/10.1104/pp.15.00605
    Lotkowska, M. E. (2014). Functional analysis of MYB112 transcription factor in the model plant Arabidopsis thaliana. 128.
    McWatters, H. G. et al. (2007). ELF4 Is Required for Oscillatory Properties of the Circadian Clock. Plant Physiology, 144(1), 391–401. https://doi.org/10.1104/pp.107.096206
    Meyerhoff, O. et al. (2005). AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta, 222(3), 418–427. https://doi.org/10.1007/s00425-005-1551-3
    Moshelion, M. et al. (2002). Diurnal and Circadian Regulation of Putative Potassium Channels in a Leaf Moving Organ. Plant Physiology, 128(2), 634–642. https://doi.org/10.1104/pp.010549
    Nguyen, C. T. et al. (2018). Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proceedings of the National Academy of Sciences, 115(40), 10178–10183. https://doi.org/10.1073/pnas.1807049115
    Qi, T. et al. (2011). The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana. The Plant Cell, 23(5), 1795–1814. https://doi.org/10.1105/tpc.111.083261
    Robinson, M. D. et al. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616
    Scherzer, S. et al. (2015). Calcium sensor kinase activates potassium uptake systems in gland cells of Venus flytraps. Proceedings of the National Academy of Sciences, 112(23), 7309–7314. https://doi.org/10.1073/pnas.1507810112
    Scorza, L. C. T., & Dornelas, M. C. (2011). Plants on the move: Towards common mechanisms governing mechanically-induced plant movements. Plant Signaling & Behavior, 6(12), 1979–1986. https://doi.org/10.4161/psb.6.12.18192
    Smith, I. K., & Fowden, L. (1966). A Study of Mimosine Toxicity in Plants. Journal of Experimental Botany, 17(4), 750–761. https://doi.org/10.1093/jxb/17.4.750
    Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
    Thomas, P. D. (2003). PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Research, 13(9), 2129–2141. https://doi.org/10.1101/gr.772403
    Veley, K. et al. (2014). Arabidopsis MSL10 Has a Regulated Cell Death Signaling Activity That Is Separable from Its Mechanosensitive Ion Channel Activity. The Plant Cell, 26(7), 3115–3131. https://doi.org/10.1105/tpc.114.128082
    Visnovitz, T. et al. (2007). Mechanoreceptor Cells on the Tertiary Pulvini of Mimosa pudica L. Plant Signaling & Behavior, 2(6), 462–466.
    Wang, Y. et al. (2016). A CBL-Interacting Protein Kinase TaCIPK2 Confers Drought Tolerance in Transgenic Tobacco Plants through Regulating the Stomatal Movement. PLOS ONE, 11(12), e0167962. https://doi.org/10.1371/journal.pone.0167962
    Wise, M. J., & Abrahamson, W. G. (2005). Beyond the compensatory continuum: Environmental resource levels and plant tolerance of herbivory. Oikos, 109(3), 417–428. https://doi.org/10.1111/j.0030-1299.2005.13878.x
    Xing, Y., & Lee, C. (2005). Evidence of functional selection pressure for alternative splicing events that accelerate evolution of protein subsequences. Proceedings of the National Academy of Sciences of the United States of America, 102(38), 13526–13531. https://doi.org/10.1073/pnas.0501213102
    Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088
    Zhang, L., & Li, W.-H. (2004). Mammalian Housekeeping Genes Evolve More Slowly than Tissue-Specific Genes. Molecular Biology and Evolution, 21(2), 236–239. https://doi.org/10.1093/molbev/msh010
    Zhou, C. et al. (2012). Identification and characterization of petiolule-like pulvinus mutants with abolished nyctinastic leaf movement in the model legume Medicago truncatula. The New Phytologist, 196(1), 92–100. https://doi.org/10.1111/j.1469-8137.2012.04268.x

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE