| 研究生: |
楊凱元 Yang, Kai-Yuan |
|---|---|
| 論文名稱: |
鋁鎵表面被覆改質錳酸鋰粉末之結晶化與高低溫充放電機制 The crystallization and the charge-discharge mechanism of high-low temperatures for Al/Ga-coated LiMn2O4 powder systems |
| 指導教授: |
洪飛義
Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 鋰離子二次電池 、錳酸鋰 、表面被覆改質 、鋁/鎵 |
| 外文關鍵詞: | Li ion secondary batteries, LiMn2O4, Coating modified, Al/Ga |
| 相關次數: | 點閱:63 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋰離子二次電池因工作電壓高、能量密度高、循環壽命長等特點,已成為二次電池的主流。錳酸鋰相對其它主流正極有成本低廉、製備容易、對環境友善等優點,是最具發展潛力的正極材料之一。
錳酸鋰在高溫(55oC)大電流充放電條件下,其結構劣化及電容量衰減問題更加劇烈,本研究以溶液法將錳酸鋰分別以鋁及鎵進行二階段表面被覆改質製備;各粉末經X-ray繞射儀、掃描式電子顯微鏡、X光電子光譜儀、穿透式電子顯微鏡、歐傑電子能譜儀等設備解析而獲得材料表面結晶化、錳離子價數變化、粉末形貌與晶格結構特性;藉由電池充放電測試與感應耦合電漿質譜分析儀,發現鋁鎵表面被覆改質層使其在55oC,以不同電流速率下有高電容量和良好循環穩定性,並能有效抑制錳離子析出問題。
此外,為釐清溫度對錳酸鋰的影響,故以電化學阻抗分析儀、四點探針、電導度計,確認電極電導率與電解液離子電導率會影響電容量變化。實驗發現溫度下降導致電導率與電容量減少,但鋁鎵表面被覆改質層相較於鋁表面被覆改質層,對錳酸鋰在低溫的劣化程度緩和。錳酸鋰粉末之鋁鎵表面被覆改質層對電導性具有提升作用,可使錳酸鋰更易於脫鋰與嵌鋰,有助於低溫環境應用。
Li ion secondary battery is a potential battery due to its high working voltage, high energy density, and good cycling life. LiMn2O4 is one of the most promising cathode materials due to its low cost, easy to synthesize, and environmentally friendly comparing with other mainstream cathode materials.
The structure and capacity of LiMn2O4 ¬operated in a high-temperature (55oC) deteriorates seriously. In this study, Ga and Al coating LiMn2O4 were synthesized by two-stage process of surface modification. This study furthermore utilizes analysis methods such as the X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectrometer (XPS), Transmission Electron Microscope (TEM), and Auger Electron Spectroscopy (AES) to obtain surface crystallization, valence changes of Mn ions, powder morphology, lattice structures and their characteristics. From the results of battery testing and the Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), it was found that the coating modified layer of LiMn2-x-yAlxGayO4 at 55oC enhanced the capacities and cycling stability at various current rate, and effectively inhibit the dissolution of Mn ions.
In addition, the Electrochemical Impedance Spectroscopy (EIS), a four-point probe and Conductometer were used to clarify the influences of temperature on the LiMn2O4 electrode. The results were confirmed that the conductivities of the electrode and the electrolyte would affect the capacities. It was found that the conductivity and capacities of electrodes decreased with decreasing the temperature. Notably, compared with the coating modified layer of LiMn2-xAlxO4, the coating modified layer of LiMn2-x-yAlxGayO4 could relax the deterioration of LiMn2O4 at low temperatures. The deintercalation/intercalation of Li ions of Al/Ga-coated surface was easier, that is suitable for application at low-temperature environment.
1. Linden, Handbook of Batteries and Fuel Cells, McGraw-Hill Inc., Chap.11, p. 1-2 (1984).
2. tw.myblog.yahoo.com/jw!hJY_jNOfGRrv6lbyLH9nn8Id/article?mid=632
3. 黃可龍、王兆祥、劉素琴,「鋰離子電池原理與技術」,五南圖書,台北,民國99年5月。
4. W. K. Kim, D. W. Han, W. H. Ryu, S. J. Lim, H. S. Kwon, Al2O3 coating on LiMn2O4 by electrostatic attraction forces and its effects on the high temperature cyclic performance, Electrochimica Acta, vol. 71, p. 17-21 (2012).
5. D. W. Shin, A. Manthiram, Surface-segregated, high-voltage spinel LiMn1.5Ni0.42Ga0.08O4 cathodes with superior high-temperature cyclability for lithium-ion batteries, Electrochemistry Communications, vol. 13, p. 1213-1216 (2011).
6. T. F. Yi, Y. R. Zhu, X. D. Zhu, J. Shu, C. B. Yue, A. N. Zhou, A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery, Ionics, vol. 15, p. 779-784 (2009).
7. Y. Xia, M. Yoshio, Studies on Li-Mn-O spinel system (obtained from melt-impregnation method) as a cathode for 4 V lithium batteries Part IV. High and low temperature performance of LiMn2O4, Journal of Power Sources, vol. 66, p. 129-133 (1997).
8. B. Scrosati, Lithium Rocking Chair Batteries: An Old Concept?, J. Electrochem. Soc., vol. 139, p. 2776-2781 (1992).
9. S. Megahed, B. Scrosati, Lithium-ion rechargeable batteries, Journal of Power Sources, vol. 51, p. 79-104 (1994).
10. 蕭彤宣,「銀添加對鋰離子二次電池鎂合金負極材料充放電特性與界面分析之研究」,國立成功大學材料科學及工程學系碩士論文,民國101 年9月。
11. 王智憲,「後熱處理對噴霧法LiMn2O4正極材料之充放電特性效應探討」,國立成功大學材料科學及工程學系碩士論文,民國93年7月。
12. www.mem.com.tw/article_content.asp?sn=1103040018
13. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0<x<1): A New Cathode Material for Batteries of High Energy Density, Materials Research Bulletin, vol. 15, p. 783-789 (1980).
14. S. H. Yang, C. Laurence, D. Claude, N. E. Chris, O. A. Michael, Atomic resolution of lithium ions in LiCoO2, Nature Materials, vol. 2, p. 464-467 (2003).
15. L. D. Dyer, B. S. Borie, G. P. Smith, Alkaki Metal-nickel Oxides of the Type MNiO2, J. Am. Chem. Soc., vol. 78, p. 1499-1503 (1954).
16. wikis.lib.ncsu.edu/images/b/be/CH795C_Halite-6.png
17. 呂宗昕,「鋰離子二次電池鋰錳氧化物陰極材料之結構安定性與乳膠法製備及特性分析」,國立臺灣大學化學工程學系暨研究所研究計畫,民國95年7月。
18. J. C. Hunter, Preparation of a new crystal form of manganese dioxide: λ-MnO2, Journal of Solid State Chemistry, vol.39, p. 142-147 (1981).
19. M. M. Thackeray, P. J. Johnson, L. A. de Picciotto, J. B. Goodenough, Electrochemical Extraction of Lithium from LiMn2O4, Mater. Res. Bull., vol.19, p. 179-187 (1984).
20. T. Hahn, International tables for crystallography, Kluwer Academic Publishers, Boston, vol. A, p. 687 (1992).
21. people.cst.cmich.edu/petko1vg/limn2o4.JPG
22. A. K. Padhi, K. S. Nanjundaswamy, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc., vol. 144, No. 4, April 1997.
23. A. K. Padhi, K. S. Nanjundaswamy, Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates, J. Electrochem. Soc., vol. 144, No. 5, May 1997.
24. J. Li, W. Yao, S. Martin, D. Vaknin, Lithium ion conductivity in single crystal LiFePO4, Solid State Ionics, vol. 179, p. 2016-2019 (2008).
25. R. J. Gummow, A. de Kock, M. M. Thackerat, Improved Capacity Retention in Rechargeable 4V Lithium/Lithium-Manganese Oxide (Spinel) Cells, Solid State Ionics, vol. 69, p. 59-67 (1994).
26. J. Choa, M. M. Thackerayb, Structure changes of LiMn2O4 spinel electrodes during electrochemical cycling, Journal of The Electrochemical Society, vol. 146, p. 3577-3581 (1999).
27. H. Yamani, T. Inoue, M. Fugita, M. Sano, A causal study of the capacity fading of Li1.01Mn1.99O4 cathode at 80oC, and the suppressing substance of its fading, Journal of Power sources, vol. 99 p. 60-65 (2001).
28. T. Kakuda, K. Uematsu, K. Toda, M. Sato, Electrochemical performance of Al-doped LiMn2O4 prepared by different methods in solid-state reaction, Journal of Power Sources, vol. 167, p. 499-503 (2007).
29. E. Iguchi, Y. Tokuda, H. Nakatsugawa, F. Munakata, Electrical transport properties in LiMn2O4, Li0.95Mn2O4, and LiMn1.95B0.05O4 (B = Al or Ga) around room temperature, Journal of Applied Physics, vol. 91, p. 2149-2154 (2002).
30. G. X. Wang, D. H. Bradhurst, H. K. Liu, S. X. Dou, Improvement of electrochemical properties of the spinel LiMn2O4 using a Cr dopant effect, Solid State Ionics, vol. 120, p. 95-101 (1999).
31. G. M. Song, W. J. Li, Y. Zhou, Synthesis of Mg-doped LiMn2O4 powders for lithium-ion batteries by rotary heating, Materials Chemistry and Physics, vol. 87, p. 162-167 (2004).
32. R. Singhal, S. R. Das, M. S. Tomar, O. Ovideo, S. Nieto, R. E. Melgarejo, R. S. Katiyar, Synthesis and characterization of Nd doped LiMn2O4 cathode for Li-ion rechargeable batteries, Journal of Power Sources, vol. 164, p.857-861 (2007).
33. H. M. Wu, J. P. Tu, X. T. Chen, Y. Li, X. B. Zhao, G. S. Cao, Effects of Ni-ion doping on electrochemical characteristics of spinel LiMn2O4 powders prepared by a spray-drying method, J Solid State Electrochem, vol. 11, p.173-176 (2007).
34. A. Iturrondobeitia, A. Goñi, V. Palomares, I. G. de Muro, L. Lezama, T. Rojo, Effect of doping LiMn2O4 spinel with a tetravalent species such as Si(IV) versus with a trivalent species such as Ga(III). Electrochemical, magnetic and ESR study, Journal of Power Sources, vol. 216, p. 482-488 (2012).
35. L. Xiong, Y. Xu, C. Zhang, Z. Zhang, J. Li, Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4, J Solid State Electrochem, vol. 15, p. 1263-1269 (2011).
36. S. W. Lee, K. S. Kim, H. S. Moon, H. J. Kim, B. W. Cho, W. I. Cho, J. B. Ju, J. W. Park, Electrochemical characteristics of Al2O3-coated lithium manganese spinel as a cathode material for a lithium secondary battery, Journal of Power Sources, vol. 126, p. 150-155 (2004).
37. D. Arumugam, G. P. Kalaignan, Synthesis and electrochemical characterization of nano-CeO2-coated nanostructure LiMn2O4 cathode materials for rechargeable lithium batteries, Electrochimica Acta, vol. 55, p. 8709-8716 (2010).
38. J. S. Gnanaraj, V. G. Pol, A. Gedanken, D. Aurbach, Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method, Electrochemistry Communications, vol. 5, p. 940-945 (2003).
39. D. Arumugam, G. P. Kalaignan, Synthesis and electrochemical characterizations of Nano-SiO2-coated LiMn2O4 cathode materials for rechargeable lithium batteries, Journal of Electroanalytical Chemistry, vol. 624, p. 197-204 (2008).
40. C. Lai, W. Ye, H. Liu, W. Wang, Preparation of TiO2-coated LiMn2O4 by carrier transfer method, Ionics, vol. 15, p. 389-392 (2009).
41. Y. M. Lin, H. C. Wu, Y. C. Yen, Z. Z. Guo, M. H. Yang, H. M. Chen, H. S. Sheu, N. L. Wu, Enhanced High-Rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-Ion Battery, Journal of The Electrochemical Society, vol. 152, p. A1526-A1532 (2005).
42. D. Liu, X. Liu, Z. He, Surface modification by ZnO coating for improving the elevated temperature performance of LiMn2O4, Journal of Alloys and Compounds, vol. 436, p. 387-391 (2007).
43. Z. Yang, W. Yang, D. G. Evans, Y. Zhao, X. Wei, The effect of a Co-Al mixed metal oxide coating on the elevated temperature performance of a LiMn2O4 cathode material, Journal of Power Sources, vol. 189, p. 1147-1153 (2009).
44. M. Kakihana, Invited Review Sol-Gel Preparation of High Temperature Superconducting Oxides, Journal of Sol-Gel Science and Technology, vol. 6, p. 7-55 (1996).
45. Y. Z. Tsai, L. K. Chau, Sol-Gel-derived transparent conducting oxide films, The Chinese Chem. Soc., vol. 60, No. 3, Sep 2002.
46. Z. S. Peng, C. R. Wan, C. Y. Jiang, Synthesis by sol-gel process and characterization of LiCoO2 cathode materials, Journal of Power Sources, vol. 72, p. 215-220 (1998).
47. www.aandb.com.tw/images/interior_images/products_images_all/phi5000_versaprobe_phi_003_big_944_629.png
48. D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5th Ed, Thomson Learning, United States (1998).
49. www.ch.ntu.edu.tw/~rsliu/solidchem/Report/Chapter6_report.pdf
50. D. K. Schroder, Semiconductor Material and Device Characterization, Wiley, New York (1998).
51. emuch.net/html/201209/4811465.html
52. www.who-sells-it.com/cy/metrohm-ag-2111/712-conductometer-10144.html
53. www.scu.edu.tw/chem/e-handouts/general01/general-11.pdf*
54. F. Y. Hung, T. S. Lui, H. C. Liao, A study of nano-sized surface coating on LiMn2O4 materials, Applied Surface Science, vol. 253, p. 7443-7448 (2007).
55. M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. St. C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science, vol. 257, p. 2717-2730 (2011).
56. 林昀,「微電子學」,亞鑫圖書,新北市,民國101年2月。
57. T. Aoshima, K. Okahara, C. Kiyohara, K. Shizuka, Mechanisms of manganese spinels dissolution and capacity fade at high temperature, Journal of Power Sources, 97-98, p. 377-380 (2001).
58. I. Barin, O. Knacke, O. Kubaschewski, Thermochemical properties of inorganic substances, Springer-Verlag, New York (1973).
59. G. Rog, W. Kucza, A. K. Rog, The standard Gibbs free energy of formation of lithium manganese oxides at the temperatures of (680, 740 and 800) K, J. Chem. Thermodynamics, vol. 36, p. 473–476 (2004).