| 研究生: |
王逸鴻 WANG, YI HUNG |
|---|---|
| 論文名稱: |
結合預測誤差與需求波動之產能平準化決策—以M公司為例 Capacity Leveling Decisions Integrating Forecast Error and Demand Variability—A Case Study of M Company |
| 指導教授: |
謝中奇
Hsieh, Chung-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2026 |
| 畢業學年度: | 114 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 需求不確定性 、產能平準化 、負荷移轉 、先進排程系統 、預測誤差 |
| 外文關鍵詞: | Demand uncertainty, Capacity leveling, Load shifting, APS, Forecast error |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討汽車照明產業中,需求高度波動與交期要求嚴苛所造成的規劃挑戰。由於總產能規劃(Aggregate Production Planning, APP)與先進排程系統(Advanced Planning and Scheduling, APS)在決策層級與時間尺度上存在落差,實務上常導致排程不穩定與產能利用效率受限。針對此一問題,本研究以 M 公司後段組裝瓶頸製程為研究對象,提出一套結合預測誤差與需求波動特性的產能平準化決策架構。
研究以平均絕對百分比誤差(Mean Absolute Percentage Error, MAPE)與預測誤差變異係數(Coefficient of Variation of Forecast Error, CV_err)量化需求不確定性,並透過四分位數矩陣對產品進行風險分群。為實作平準化邏輯,本研究開發一套 Excel VBA 模組,評估基準策略(Baseline)、前移負荷移轉(Forward Load Shifting, FLS)、後移負荷移轉(Backward Load Shifting, BLS)、雙向負荷移轉(Two-way Load Shifting, TLS),以及本研究提出的 MCAS 自適應策略(MAPE-CV_err Adaptive Strategy, MCAS)。各策略以 2024 年需求資料進行 N+8 週滾動式模擬,並匯入既有 APS 系統進行驗證。
實證結果顯示,傳統平準化策略在生產穩定性與交期回應力之間存在明顯權衡關係。相較之下,MCAS 透過不確定性驅動的分層決策機制,有效改善此一限制。結果顯示,MCAS 在以預交日為基準之準時交貨率(OTD_Due)上達到 51.26%(p < 0.05),同時將重點工站之負荷變異係數(Load CV)維持於 0.5299。效率前緣分析進一步證實,該策略能在不增加產能資源的前提下,同時兼顧生產穩定性與交期績效。本研究所提出之架構,為 APP 與 APS 之間的整合提供一套具實務可行性的決策參考。
This study addresses the decision gap between Aggregate Production Planning (APP) and Advanced Planning and Scheduling (APS) under demand volatility in the automotive lighting industry. A capacity leveling framework integrating forecast error is proposed for M Company’s bottleneck process. Using MAPE and CV_err to classify uncertainty, five strategies (Baseline, FLS, BLS, TLS, and MCAS) are simulated via Excel VBA. Empirical results reveal a stability-responsiveness trade-off in traditional strategies. However, the proposed MCAS strategy significantly improves On-Time Delivery to 51.26% (p<0.05) while maintaining load stability (CV 0.5299). Efficiency Frontier Analysis confirms MCAS optimizes performance, effectively bridging the structural gap between APP and APS.
Al-e-Hashem, S. M. J. M., Aryanezhad, M. B., & Sadjadi, S. J. (2012). An efficient algorithm to solve a multi-objective robust aggregate production planning in an uncertain environment. The International Journal of Advanced Manufacturing Technology, 58(5-8), 765–782.
Altendorfer, K., & Felberbauer, T. (2023). Forecast and production order accuracy for stochastic forecast updates with demand shifting and forecast bias correction. Simulation Modelling Practice and Theory, 125, 102740.
Alvandi, S., Li, W., & Kara, S. (2017). An integrated simulation optimisation decision support tool for multi-product production systems. Modern Applied Science, 11(9), 18.
Avadiappan, V., Gupta, D., & Maravelias, C. T. (2022). Production scheduling under demand uncertainty in the presence of feedback: Model comparisons, insights, and paradoxes. Computers & Chemical Engineering, 168, 108028.
Bohnen, F., Buhl, M., & Deuse, J. (2013). Systematic procedure for leveling of low volume and high mix production. CIRP Journal of Manufacturing Science and Technology, 6(1), 53-58.
Boutbagha, M., & El Abbadi, L. (2024). Heijunka-levelling customer orders: a systematic literature review. International Journal of Production Management and Engineering, 12(1), 31-41.
Carvalho, A. N., Scavarda, L. F., & Oliveira, F. (2017). An optimisation approach for capacity planning: modelling insights and empirical findings from a tactical perspective. Production, 27, e20170014. https://doi.org/10.1590/0103-6513.001417
Chavan, S., & Shinde, D. (2022). Development of scheduling optimization tool using Excel VBA and Solver for productivity improvement of slitting machines for PVC/PVDC film. Journal of Management and Science, 12(4), 38–42.
Cheraghalikhani, A., Khoshalhan, F., & Mokhtari, H. (2019). Aggregate production planning: A literature review and future research directions. International Journal of Industrial Engineering Computations, 10(2), 309-330.
Chopra, S., & Meindl, P. (2015). Supply Chain Management: Strategy, Planning, and Operation, eBook, Global Edition. Pearson Education.
Dohale, V., Ambilkar, P., Gunasekaran, A., & Bilolikar, V. (2022). A multi-product and multi-period aggregate production plan: a case of automobile component manufacturing firm. Benchmarking: An International Journal, 29(10), 3396-3425.
ElMaraghy, H., & Deif, A. M. (2014). Dynamic modelling of impact of lean policies on production levelling feasibility. CIRP Annals – Manufacturing Technology, 63(1), 389–392.
Fildes, R., Goodwin, P., Lawrence, M., & Nikolopoulos, K. (2009). Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning. International Journal of Forecasting, 25(1), 3-23.
Fisher, M. L. (1997). What is the right supply chain for your product? Harvard Business Review, 75, 105-117.
Gan, Z. L., Musa, S. N., & Yap, H. J. (2023). A review of the high-mix, low-volume manufacturing industry. Applied Sciences, 13(3), 1687.
Hopp, W. J., & Spearman, M. L. (2011). Factory Physics. Waveland Press.
Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679-688.
Jonsson, P., Kjellberg, M., & Bystedt, J. (2025). Metrics development for the visualisation and prediction of material delivery schedule variations in supply chains. Production Planning & Control, 1-22.
Liker, J. K. (2004). The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer. McGraw-Hill.
Mezzogori, D., Romagnoli, G., & Zammori, F. (2022). A new perspective on Workload Control by measuring operating performances through an economic valorization. Scientific Reports, 12(1), 14599.
Oger, R., Lauras, M., Montreuil, B., & Benaben, F. (2022). A decision support system for strategic supply chain capacity planning under uncertainty: conceptual framework and experiment. Enterprise Information Systems, 16(5), 1793390.
Oluyisola, O. E., Bhalla, S., Sgarbossa, F., & Strandhagen, J. O. (2022). Designing and developing smart production planning and control systems in the industry 4.0 era: a methodology and case study. Journal of Intelligent Manufacturing, 33(1), 311-332.
Saoud, P., Kourentzes, N., & Boylan, J. E. (2025). The importance of forecast uncertainty in understanding the Bullwhip effect. International Journal of Production Research, 1-22.
Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory Management and Production Planning and Scheduling (Vol. 3). Wiley New York.
Skinner, W. (1969). Manufacturing—missing link in corporate strategy. Harvard Business Review, 47(3), 136–145.
Syntetos, A. A., Boylan, J. E., & Croston, J. (2005). On the categorization of demand patterns. Journal of the Operational Research Society, 56(5), 495-503.
Urgo, M., Lanza, G., Vrabič, R., & Gyulai, D. (2025). Future-proof production scheduling and control. CIRP Annals. https://doi.org/10.1016/j.cirp.2025.04.095
Vass, J., Lackner, M.-L., Mrkvicka, C., Musliu, N., & Winter, F. (2022). Exact and meta-heuristic approaches for the production leveling problem. Journal of Scheduling, 25(3), 339-370.
Vieira, J., Deschamps, F., & Valle, P. D. (2021). Advanced planning and scheduling (APS) systems: A systematic literature review. In L. Newnes et al. (Eds.), Transdisciplinary engineering for resilience: Responding to system disruptions (pp. 385–394). IOS Press. https://doi.org/10.3233/ATDE210118
Wang, C., Zhang, Y., Fu, X., & Ding, H. (2023). Design of APS-based production planning system for automotive companies. In Proceedings of the 2023 4th International Conference on Big Data Economy and Information Management (BDEIM 2023) (pp. 147–152). Zhengzhou, China: Atlantis Press.