| 研究生: |
吳昊謙 Wu, Hao-Qian |
|---|---|
| 論文名稱: |
探討通勤者對通勤月票之態度及行為—以高雄 TPASS MeN Go 為例 Exploring the Attitudes and Behaviors of Commuters Towards Commuting Monthly Passes -The Case of Kaohsiung TPASS MeN Go. |
| 指導教授: |
陳勁甫
Chen, Ching-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | TPASS 通勤月票 、交通行動服務 、服務體驗 、潛在類別分析 、多重對應分析 |
| 外文關鍵詞: | Mobility-as-a-Service, Monthly Pass, Use experience, Latent class analysis, Multiple correspondence analysis |
| 相關次數: | 點閱:124 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了減少過多私有運具帶來的負面影響,須採取措施引導通勤者轉向更環保的移動模式。交通行動服務(Mobility as a Service, MaaS)是近幾年被廣泛討論的概念,主要將運輸服務、旅運資訊及行程規劃功能整合至應用程式,有助於減少搭乘公共運輸耗費的時間與成本。
在2023年,我國政府推行TPASS通勤月票政策,各地區均推出地方套票。其中,南高屏地區之TPASS整合至高雄市的交通行動服務-MeN Go後,使MeN Go會員數呈現大幅增加趨勢,了解目前使用者的行為、體驗滿意度及忠誠度,對於維持現有成效或進一步改善具有重要意義。
由於個體行為具異質性,本研究透過網路調查,利用910份有效問卷進行潛在類別分析,將TPASS MeN Go使用者進行分群,了解各群體之日常移動模式與服務體驗情形,其中也考量了社會人口特徵及態度面之心理因素,以作為群體特徵的辨識。不同的分群指標有不同的解釋意義,因此分別以通勤行為變數與服務體驗變數兩個面向進行分群。
研究結果顯示,通勤行為模型分為三個主要群體,分別為早期使用者(45.6%)、跨境通勤者(27.7%)、低度通勤者(26.7%),各群體皆有偏好的主要運具及月票方案。而服務體驗模型可分為三個不同程度之群體,在經濟效益、移動便利性、交易便利性、資訊性的表現皆存在差異,發現當通勤距離及服務的使用頻率越高,越有可能是高度服務體驗者,其對於滿意度、忠誠度、幸福感都有較高的感受,即便如此,在移動便利性、資訊性仍存在進步的空間,未來服務商可以針對此方向改善,以進一步提升服務的利用與推廣。
In 2023, Taiwan implemented the TPASS commuter pass policy, launching regional passes across various areas. In Southern Taiwan, the TPASS was integrated into Kaohsiung's Mobility as a Service (MaaS) platform, MeN Go, leading to a significant increase in MeN Go membership. Understanding current user behavior, satisfaction, and loyalty is crucial for sustaining this growth and guiding future improvements.
Given the heterogeneity of individual behaviors, this study conducted a latent class analysis based on an online survey with 910 valid questionnaires to categorize TPASS MeN Go users. The aim was to understand the daily mobility patterns and service experiences of each group, also considering sociodemographic characteristics and psychological factors related to attitudes to identify group characteristics. Recognizing that different clustering criteria yield different insights, the study performed clustering based on both commuting behavior variables and service experience variables.
The results revealed three main groups in the commuting behavior model: early adopters (45.6%), cross-border commuters (27.7%), and low-frequency commuters (26.7%), each with distinct preferences for transportation modes and pass options. The service experience model also identified three groups with varying degrees of service experience, with notable differences in economic benefits, mobility convenience, transaction convenience, and informativeness. Higher commuting distance and service usage frequency were associated with a higher likelihood of belonging to the high-service experience group, which reported greater satisfaction, loyalty, and well-being. However, there is still room for improvement in mobility convenience and information accessibility. Service providers should focus on these areas to further enhance service utilization and promotion.
交通部. (2022). 111年民眾日常使用運具狀況調查摘要分析.
蔡維倫. (2023). 探討交通行動服務方案服務體驗, 滿意度, 忠誠度關係之研究: 以 MeNGO 為例.
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
Alonso-González, M. J., Hoogendoorn-Lanser, S., van Oort, N., Cats, O., & Hoogendoorn, S. (2020). Drivers and barriers in adopting Mobility as a Service (MaaS)–A latent class cluster analysis of attitudes. Transportation Research Part A: Policy and Practice, 132, 378-401.
Badoe, D., & Yendeti, M. (2007). Impact of transit-pass ownership on daily number of trips made by urban public transit. Journal of Urban Planning and Development, 133(4), 242-249.
Bakk, Z., Tekle, F. B., & Vermunt, J. K. (2013). Estimating the association between latent class membership and external variables using bias-adjusted three-step approaches. Sociological methodology, 43(1), 272-311.
Bueno, P. C., Gomez, J., Peters, J. R., & Vassallo, J. M. (2017). Understanding the effects of transit benefits on employees’ travel behavior: Evidence from the New York-New Jersey region. Transportation Research Part A: Policy and Practice, 99, 1-13.
Chatterjee, K., Chng, S., Clark, B., Davis, A., De Vos, J., Ettema, D., Handy, S., Martin, A., & Reardon, L. (2020). Commuting and wellbeing: a critical overview of the literature with implications for policy and future research. Transport reviews, 40(1), 5-34.
Chen, C.-F., & Chen, Y.-X. (2022). Investigating the effects of platform and mobility on mobility as a service (MaaS) users’ service experience and behavioral intention: empirical evidence from MeNGo, Kaohsiung. Transportation, 1-20.
Cheng, Y.-H., & Chen, S.-Y. (2015). Perceived accessibility, mobility, and connectivity of public transportation systems. Transportation Research Part A: Policy and Practice, 77, 386-403.
Cisterna, C., Madani, N., Bandiera, C., Viti, F., & Cools, M. (2023). MaaS modelling: a review of factors, customers’ profiles, choices and business models. European Transport Research Review, 15(1), 37.
Cronin Jr, J. J., & Taylor, S. A. (1992). Measuring service quality: a reexamination and extension. Journal of marketing, 56(3), 55-68.
Diener, E. (1994). Assessing subjective well-being: Progress and opportunities. Social indicators research, 31, 103-157.
Donald, I. J., Cooper, S. R., & Conchie, S. M. (2014). An extended theory of planned behaviour model of the psychological factors affecting commuters' transport mode use. Journal of environmental psychology, 40, 39-48.
Duarte, P., e Silva, S. C., & Ferreira, M. B. (2018). How convenient is it? Delivering online shopping convenience to enhance customer satisfaction and encourage e-WOM. Journal of Retailing and Consumer Services, 44, 161-169.
Eboli, L., & Mazzulla, G. (2007). Service quality attributes affecting customer satisfaction for bus transit. Journal of public transportation, 10(3), 21-34.
Feneri, A.-M., Rasouli, S., & Timmermans, H. J. (2022). Modeling the effect of Mobility-as-a-Service on mode choice decisions. Transportation Letters, 14(4), 324-331.
Fioreze, T., De Gruijter, M., & Geurs, K. (2019). On the likelihood of using Mobility-as-a-Service: A case study on innovative mobility services among residents in the Netherlands. Case Studies on Transport Policy, 7(4), 790-801.
FitzRoy, F., & Smith, I. (1999). Season tickets and the demand for public transport. Kyklos, 52(2), 219-238.
Fornell, C., Johnson, M. D., Anderson, E. W., Cha, J., & Bryant, B. E. (1996). The American customer satisfaction index: nature, purpose, and findings. Journal of marketing, 60(4), 7-18.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2013). Multivariate Data Analysis. Pearson Education Limited.
Han, Y., Li, W., Wei, S., & Zhang, T. (2018). Research on Passenger’s travel mode choice behavior waiting at bus station based on SEM-logit integration Model. Sustainability, 10(6), 1996.
Heikkilä, S. (2014). Mobility as a service-a proposal for action for the public administration, case helsinki
Hensher, D. A., Ho, C. Q., & Reck, D. J. (2021). Mobility as a service and private car use: Evidence from the Sydney MaaS trial. Transportation Research Part A: Policy and Practice, 145, 17-33.
Hensher, D. A., & Xi, H. (2022). Mobility as a service (MaaS): are effort and seamlessness the keys to MaaS uptake? Transport Reviews, 42(3), 269-272.
Hietanen, S. (2014). Mobility as a Service. the new transport model, 12(2), 2-4.
Hjorteset, M. A., & Böcker, L. (2020). Car sharing in Norwegian urban areas: Examining interest, intention and the decision to enrol. Transportation research part D: transport and environment, 84, 102322.
Ho, C. Q., Hensher, D. A., Mulley, C., & Wong, Y. Z. (2018). Potential uptake and willingness-to-pay for Mobility as a Service (MaaS): A stated choice study. Transportation Research Part A: Policy and Practice, 117, 302-318.
Ho, C. Q., Mulley, C., & Hensher, D. A. (2020). Public preferences for mobility as a service: Insights from stated preference surveys. Transportation Research Part A: Policy and Practice, 131, 70-90.
Hoerler, R., Stünzi, A., Patt, A., & Del Duce, A. (2020). What are the factors and needs promoting mobility-as-a-service? Findings from the Swiss Household Energy Demand Survey (SHEDS). European Transport Research Review, 12, 1-16.
Kamargianni, M., Li, W., Matyas, M., & Schäfer, A. (2016). A critical review of new mobility services for urban transport. Transportation Research Procedia, 14, 3294-3303.
Karlsson, I., Mukhtar-Landgren, D., Smith, G., Koglin, T., Kronsell, A., Lund, E., Sarasini, S., & Sochor, J. (2020). Development and implementation of Mobility-as-a-Service–A qualitative study of barriers and enabling factors. Transportation Research Part A: Policy and Practice, 131, 283-295.
Ko, E., Kwon, Y., Son, W., Kim, J., & Kim, H. (2021). Factors Influencing Intention to Use Mobility as a Service: Case Study of Gyeonggi Province, Korea. Sustainability, 14(1), 218.
Kriswardhana, W., & Esztergár-Kiss, D. (2023a). Exploring the aspects of MaaS adoption based on college students’ preferences. Transport Policy, 136, 113-125.
Kriswardhana, W., & Esztergár-Kiss, D. (2023b). A systematic literature review of Mobility as a Service: Examining the socio-technical factors in MaaS adoption and bundling packages. Travel Behaviour and Society, 31, 232-243.
Lopez-Carreiro, I., Monzon, A., Lois, D., & Lopez-Lambas, M. E. (2021). Are travellers willing to adopt MaaS? Exploring attitudinal and personality factors in the case of Madrid, Spain. Travel Behaviour and Society, 25, 246-261.
Lopez-Carreiro, I., Monzon, A., & Lopez, E. (2024). Assessing the intention to uptake MaaS: the case of Randstad. European Transport Research Review, 16(1), 2.
Luo, X. (2002). Uses and gratifications theory and e-consumer behaviors: A structural equation modeling study. Journal of Interactive advertising, 2(2), 34-41.
Lyons, G., Hammond, P., & Mackay, K. (2019). The importance of user perspective in the evolution of MaaS. Transportation Research Part A: Policy and Practice, 121, 22-36.
Matyas, M., & Kamargianni, M. (2019). Survey design for exploring demand for Mobility as a Service plans. Transportation, 46(5), 1525-1558.
Matyas, M., & Kamargianni, M. (2021). Investigating heterogeneity in preferences for Mobility-as-a-Service plans through a latent class choice model. Travel Behaviour and Society, 23, 143-156.
Meyer‐Waarden, L., Benavent, C., & Castéran, H. (2013). The effects of purchase orientations on perceived loyalty programmes' benefits and loyalty. International Journal of Retail & Distribution Management, 41(3), 201-225.
Mulley, C., Nelson, J. D., & Wright, S. (2018). Community transport meets mobility as a service: On the road to a new a flexible future. Research in Transportation Economics, 69, 583-591.
Nguyen-Phuoc, D. Q., Vo, N. S., Su, D. N., Nguyen, V. H., & Oviedo-Trespalacios, O. (2021). What makes passengers continue using and talking positively about ride-hailing services? The role of the booking app and post-booking service quality. Transportation Research Part A: Policy and Practice, 150, 367-384.
Nie, P., & Sousa-Poza, A. (2018). Commute time and subjective well-being in urban China. China Economic Review, 48, 188-204.
Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A conceptual model of service quality and its implications for future research. Journal of marketing, 49(4), 41-50.
Rafiq, R., & McNally, M. G. (2021). Heterogeneity in activity-travel patterns of public transit users: an application of latent Class Analysis. Transportation Research Part A: Policy and Practice, 152, 1-18.
Rahman, M. (2023). Commute mode switch and its relationship to life events, built-environment, and attitude change. Transportation research part D: transport and environment, 120, 103777.
Shaheen, S. A., & Lipman, T. E. (2007). Reducing greenhouse emissions and fuel consumption: Sustainable approaches for surface transportation. IATSS research, 31(1), 6-20.
Smith, O. (2017). Commute well-being differences by mode: Evidence from Portland, Oregon, USA. Journal of Transport & Health, 4, 246-254.
Sochor, J., Arby, H., Karlsson, I. M., & Sarasini, S. (2018). A topological approach to Mobility as a Service: A proposed tool for understanding requirements and effects, and for aiding the integration of societal goals. Research in Transportation Business & Management, 27, 3-14.
Thøgersen, J. (2009). Promoting public transport as a subscription service: Effects of a free month travel card. Transport Policy, 16(6), 335-343.
Ton, D., Zomer, L.-B., Schneider, F., Hoogendoorn-Lanser, S., Duives, D., Cats, O., & Hoogendoorn, S. (2020). Latent classes of daily mobility patterns: the relationship with attitudes towards modes. Transportation, 47, 1843-1866.
van't Veer, R., Annema, J. A., Araghi, Y., de Almeida Correia, G. H., & van Wee, B. (2023). Mobility-as-a-Service (MaaS): A latent class cluster analysis to identify Dutch vehicle owners’ use intention. Transportation Research Part A: Policy and Practice, 169, 103608.
Van Acker, V., Ho, L., & Mulley, C. (2021). “Satisfaction lies in the effort”. Is Gandhi’s quote also true for satisfaction with commuting? Transportation Research Part A: Policy and Practice, 151, 214-227.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Vermunt, J. K., & Magidson, J. (2016). Upgrade manual for Latent GOLD 5.1. Belmont, MA: Statistical Innovations.
Wang, Y., & Shen, Q. (2022). A latent class analysis to understand riders’ adoption of on-demand mobility services as a complement to transit. Transportation, 1-19.
Weller, B. E., Bowen, N. K., & Faubert, S. J. (2020). Latent class analysis: a guide to best practice. Journal of Black Psychology, 46(4), 287-311.
Ye, J., Zheng, J., & Yi, F. (2020). A study on users' willingness to accept mobility as a service based on UTAUT model. Technological Forecasting and Social Change, 157, 120066.
Yin, C., Shao, C., Dong, C., & Wang, X. (2019). Happiness in urbanizing China: The role of commuting and multi-scale built environment across urban regions. Transportation Research Part D: Transport and Environment, 74, 306-317.
Zijlstra, T., Durand, A., Hoogendoorn-Lanser, S., & Harms, L. (2020). Early adopters of Mobility-as-a-Service in the Netherlands. Transport Policy, 97, 197-209.
校內:2029-08-01公開