簡易檢索 / 詳目顯示

研究生: 吳曄真
Wu, Yeh-chen
論文名稱: 台灣地區住宅系統板材裝修量對室內空氣品質影響之研究-以台南市施作案為例
A Study on Effect of Indoor Quality for Amount of Systematic Board in The House in Taiwan-Tainan Region for Examples
指導教授: 江哲銘
Chiang, Che-Ming
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系碩士在職專班
Department of Architecture (on the job class)
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 136
中文關鍵詞: 總揮發性化學物質(TVOC)病態住宅(SiCK HOUSE)通風換氣率裝修負荷因子系統板材
外文關鍵詞: TVOC, systematic board, air-exchange rate, renovated loading factor, sick house syndrome
相關次數: 點閱:83下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來台灣的裝潢業日益盛行,也因健康議題被重視,因此應用系統板材作為主要裝修材料的方式,逐漸被國人所採用;系統板材的主要優點,在於裝修後室內不易產生辛辣味,也因為來自歐美國家的板材,強調環保、低甲醛的特性,更為國人所接受。為了更進一步了解系統板材在裝修後,對室內空氣品質的影響。因此,本研究依十四個實際案例探討台灣目前所使用的主要裝修建材,以系統板材為主及傳統木作方式的個案來調查台灣南部十四個新建、改建裝修一年內的住宅,以環境監測儀器(B&K1302/1303、SHIBATA IEC 2000)長時間量測室內TVOC、甲醛、二氧化碳,溫度、濕度等因子變化。
    在裝修完工後,局部使用空調系統及自然通風,現場量測8小時,觀察系統板材及高逸散建材甲醛濃度及TVOC之逸散量。並以Quick environment exposure and sensitivity inventory(QEESI)方法調查住宅之使用者,評估其化學物質暴露之敏感性反應。
    實驗結果得知:室內的裝修材料使用了「系統板材」及「高逸散建材」(大於0.19mg/ m2*hr)局部使用空調系統及自然通風,量測8小時,甲醛濃度為0.28ppm、TVOC為1.16ppm,受到主要建材逸散的影響,大量使用系統板材,其濃度明顯低於使用高逸散建材。但使用系統板材裝修在牆、櫥櫃、家具、天花板等部位,其裝修負荷因子(loading Factor)為1.57(m2/m3)甲醛平均濃度為0.44ppm,高於健康基準值,原因在於使用高逸散之木地板,成為主要室內污染源。研究當中案例分為關窗及開窗狀態,發現使用系統板材案例,若處於關窗並開空調的状態下,其濃度為2ppm,於開窗後其濃度降至0.1ppm以下,顯示開窗引入自然通風,可以短時間降低甲醛濃度。
    本研究用九個以系統板為主要建材、三個以一般木作裝修方式、一個低逸散建材及一個裝修前空屋,為測量對象,共有十四個案例,以下是就本研究十四個案例分析狀況下所得之結果。
    一、以系統板材為主要建材得知:
    1. 系統板材使用量與病態住宅症狀之關係,以通風換氣影響程度最大,其次為
    系統板材的使用量
    2. 系統板材在裝修後室內所逸散出甲醛的濃度比傳統木作低
    3. 室內裝修負荷率應低於1.5(m2/m3)較佳
    4. 開窗面積越大、TVOC及甲醛濃度越低
    5. 系統板材使用比例越高,室內甲醛濃度越低 (R>0.83,R-Square>0.69)

    二、以傳統木作為主要建材得知:
    1. 高逸散建材裝修比例與甲醛呈正相關性(R>0.87,R-Square>0.76) ,即高逸散
    建材使用越多,甲醛濃度值亦會增加
    2. 負荷率越高、TVOC及甲醛濃度越高

    Recently years, the renovated industry in Taiwan are popular with the importance of
    healthy issue for Taiwan people, and then, the main way of applied systematic board is
    getting to be adapted by Taiwanese. Due to the advantages of systematic board is not
    caused by the spicy smell, and the board materials comes from Europe stressed the
    characteristics of environmental protection is more accepted by Taiwanese. For the
    purposes of the further understanding the effect of air quality after the systematic board
    renovating, the study depended on fourteen actual cases investigates the present renovated
    main materials of building in Taiwan, according to apply the primary of systematic board
    and the case of traditionally wood-working investigate fourteen buildings of new and
    re-builted in Southern Taiwan. It is to measure the variations of TVOC, formaldehyde,
    CO2, temperature, and humidity in indoor for a long time by environmental detect
    instruments (B&K1302/1303、SHIBATA IEC 2000). Using locally air-condition system
    and natural ventilation and measure eight hours after renovating, and observing the
    systematic board, the formaldehyde concentration of high-emission building material, and
    the emission quantity of TVOC. At the same time, investigating the buildings users
    according to QEESI and judging the sensitivity reactions of chemical substances exposing.
    According to experimental results:
    The indoor renovated materials composed of systematic board and high-emission
    building material (>0.19mg/m2*hr) measure eight hours by partly using air-condition
    system and natural ventilation. The formaldehyde concentration is 0.288 ppm, TVOC
    concentration of 1.16 ppm, the effect suffers form the emission of building materials, the
    concentration used the quantity of systematic materials is obviously lower than
    high-emission building material. Using systematic board renovated on wall, sideboard,
    furniture, and ceiling, the Loading Factor is 1.57 (m2/m3), the average concentration of
    formaldehyde is 0.44 ppm, is higher than healthy standard value; the reason due to using
    high-emission floor becomes the source of pollution. The case on study tells apart the
    condition of close-window and open-window. It is found of systematic board case that is in
    the situation of close-window and turn-on air-condition, the concentration of 2 ppm, and
    concentration is low down below 0.1 ppm after opening the window. The result is showing
    that opening the window could cause the coming of natural wind and decrease the
    formaldehyde concentration in short time. According to the experimental result, the
    IV
    ventilation rates have the greatest effect between the relation of the quantity of systematic
    board and sick house syndrome, and the quantity of systematic board has the second effect.
    Besides, how the systematic board use must collocate with suitable air exchange rates in
    order to decrease the indoor chemical substance concentration and keep the indoor air
    quality. On the other hand, the building materials adapted primarily systematic board are
    better than the generally traditional wood-working, and the ill effect of air quality after
    renovating is much lower. So, the primarily renovated way of systematic board is worthy
    to be popularized.
    For the purposes of experimental operations, to obtain the factors of air quality after
    renovating in order to offer the estimation of environmental conditions before designing
    for the industry members and the processing relational installations. It could make the ill
    effect of air quality have the lowest value, and care the worker’s healthy to become a
    professional and respected designer.

    中文摘要 ----------------------------------------------------------------------------Ⅰ 英文摘要 ----------------------------------------------------------------------------Ⅲ 致謝 ----------------------------------------------------------------------------Ⅴ 表目錄 ----------------------------------------------------------------------------Ⅷ 圖目錄 ----------------------------------------------------------------------------Ⅹ 第一章 緒論 --------------------------------------------------------------------1 1-1- 研究動機 ---------------------------------------------------------------1 1-2- 研究目的與範圍 -----------------------------------------------------2 1-3- 研究方法與流程 -----------------------------------------------------3 1-4 預期成果 -------------------------------------------------------------5 第二章 建材與室內空氣品質相關文獻探討 -----------------------------6 2-1 相關文獻 -------------------------------------------------------------6 2-2 系統板的種類與特性 ----------------------------------------------7 2-3 台灣現況裝修模式 ------------------------------------------------10 2-4 台灣系統板材使用現況 ------------------------------------------11 2-5 系統板及木作-工法、構法優劣比較 -------------------------12 2-6 室內空氣中TVOC 對健康之影響 ------------------------------13 第三章 研究內容與方法 ----------------------------------------------------24 3-1 室內空氣環境量測方法 ------------------------------------------24 3-2 室內通風量及換氣效率 ------------------------------------------32 3-3 使用者問卷QEESI 統計方法 ----------------------------------35 第四章

    中文部分
    1. 江哲銘、李俊璋、洪玉珠,〝病態建築診斷機制建立計畫〞,內政部建築研究所,
    (2007)
    2. 江哲銘、蘇慧貞,〝室內環境品質改善補助計畫〞,內政部建築研究所,(2006)
    3. 江哲銘、林慶元,〝綠建材評定審查及諮詢服務〞,內政部建築研究所,(2006)
    4. 江哲銘、李俊璋,〝健康綠建材性能實驗研究子計畫(一) 建材揮發性有機物質試
    驗-ISO 標準之可行性研究〞,內政部建築研究所,(2006)
    5. 江哲銘,〝綠建材性能實驗研究子計畫(二) 全尺寸建材於本土氣候試驗條件下揮
    發性有機物質逸散變化之研究〞,內政部建築研究所,(2006)
    6. 江哲銘、蘇慧貞,〝室內環境品質改善補助計畫〞,內政部建築研究所,(2005)
    7. 江哲銘、李俊璋,〝綠建材性能實驗研究子計畫(一) 建材有機化合物預測衰減模
    式探討及推動策略研擬〞,內政部建築研究所,(2005)
    8. 江哲銘,〝綠建材性能實驗研究子計畫(二) 全尺寸建材逸散模擬實驗室—標準檢
    測作業程序之研究〞,內政部建築研究所,(2005)
    9. 江哲銘,〝綠建材評定審查及推廣講習補助計畫〞,內政部建築研究所,(2005)
    10. 江哲銘、李俊璋,〝綠建材性能實驗研究子計畫(一) 建材有機逸散物資料庫之建
    立-接著劑類建材〞,內政部建築研究所,(2004)
    11. 江哲銘,〝綠建材性能實驗研究子計畫(二)總揮發性有機化合物實驗室性能評估
    及CNLA 認證作業系統之建立〞,內政部建築研究所,(2004)
    12. 江哲銘,〝綠建材標章制度推廣與應用補助計畫〞,內政部建築研究所,(2004)
    13. 江哲銘、李俊璋,〝綠建材性能實驗研究子計畫(一) 建材有機逸散物資料庫之建
    立-地板類建材〞,內政部建築研究所,(2003)
    14. 江哲銘,〝綠建材性能實驗研究子計畫(二)總揮發性有機化合物實驗室建置及實
    驗架構之研究〞,內政部建築研究所,(2003)
    111
    15. 蕭江碧、江哲銘,〝小尺寸建材揮發性有機物實驗室CNLA 認證取得之研究〞,
    內政部建築研究所,(2003)
    16. 江哲銘,〝綠建材標章制度建立與推廣補助計畫〞,內政部建築研究所,(2003)
    17. 江哲銘、李俊璋,〝室內建材揮發性有機逸散物質檢測標準試驗方法及程序之研
    究〞,內政部建築研究所,(2001)
    18. 何明錦、江哲銘,〝建築室內建材揮發性有機化合物衰減總表之研究〞,內政部建
    築研究所,(2000)
    19. 張志成,〝建築室內逸散物質檢測分析研究(一)建築室內環境揮發性有機物檢
    測實驗室建置〞,內政部建築研究所,(1999)
    20. 江哲銘等,〝建築室內環境保健控制綜合指標之研究〞,內政部建築研究所,(1999)
    112
    外文部分
    1. Air Quality and Human Health-Indoor Air Quality, State of the Environment Reporting,
    En-vironment Australia, Australia, 1997.
    2. Che-Ming Chiang, Po-Cheng Chou, Chi-Ming Lai, A Methodology to Access the
    Indoor Environment in Care Centers for Senior Citizens, Building and Environment
    Vol. 36, No. 4., 2000.
    3. CM Lai, CM Chiang, A Study on the Comprehensive Indicator of Indoor Environment
    Assessment for Occupants’ Health in Taiwan, Building and Environment, Vol. 37, No.4,
    pp.387-392, 2001.
    4. Etkin DS. Ceilings/Walls & IAQ: Health impacts, prevention & mitigation. Cutter
    Information Corp. Arlington, U.S.A. 1994.
    5. Etkin DS. Office furnishings/equipment & IAQ: Health impacts, prevention &
    mitigation. Cutter Information Corp. Arlington, U.S.A. 1992.
    6. F. M. Lin, C. M. Chiang, and S. F. Chen, Prediction and Reduction Evaluation of Floor
    Vibration Induced by Foot Steps, Building Acoustics Vol. 8, No. 2., 2001.
    7. Healthy Building 2000 Proceedings, International Conference on Healthy Building,
    Espoo, Finland. 2000.
    8. ICNIRP Statement, General Approach to Protection Against Non-Inonizing Radiation,
    International Commission on Non-Ionizing Radiation Protection, 2002.
    9. International Conference Sustainable Building 2000 Proceedings, Maastricht,
    Netherlands. 2000.
    10. Marie Hult, Assessment of indoor environment in existing buildings, Green Building
    Challenge ’98 , Vol. 2, pp.139-146, 1998.10., Sweden. 1998.
    11. O’Reilly JT, Hagan P, Gots R, Hedege A. Keeping Buildings Healthy: How to monitor
    and prevent indoor environmental problems. John Wiley & Sons, Inc. Canada. 1998.
    12. Seppänen O, Tuomainen M, Säteri J. Healthy Buildings 2000: Workshop Summaries.
    Espoo, Finland. 2000.
    113
    13. Spengler J.D.; Samet, J.M.; McCarthy, J.F ,〝Indoor Air Quality Handbook〞,
    McGraw-Hill,2002.
    14. Ventilation for Acceptable Air Quality, ASHARE Standard 62-1998, American Society
    of Heating, Refrigerating, and Air-Conditioning and Sanitary Engineers Inc., Atlanta:
    1998.
    15. 日本建設省建築研究所,室內環境評價法,1994。
    16. 日本建築學會,環境磁場計測技術,1998。
    17. 田邊新一,室內化學污染シックハウス常識と對策,株式會社講談社,Japan,1998.。
    18. 高木任之,建築基準法性能規定をみこなすコツ,學藝出版社,2000.11。
    19. 國土交通省住宅局,必攜「住宅の品質確保の促進等に關する法律」改訂版2001,
    創樹社,Japan,2001

    下載圖示 校內:2009-07-25公開
    校外:2009-07-25公開
    QR CODE