| 研究生: |
楊翔渝 Yang, Shiang-Yu |
|---|---|
| 論文名稱: |
圓柱金屬波導之模態分析與有限差分時域法模擬 Mode Solving & FDFD Simulating of Cylindrical metallic Waveguide |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 金屬 、圓柱 、波導 、模態 、有限差分頻域法 |
| 外文關鍵詞: | metal, cylindrical, waveguide, mode, FDFD |
| 相關次數: | 點閱:64 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
波導通訊從18世紀以來一直都是電磁波傳遞最重要的方式,隨著奈米技術的發展 ,奈米尺寸的波導管也廣泛的在各式晶片、中央處理器中被應用。但隨著波導尺寸的縮小,奈米尺度波導的截止頻率也隨之增加至 Hz左右,在此情況下如何克服高頻互相耦合的行為成為科學家有興趣的問題。本文中使用表面電漿波(Surface Plasmon)的特殊物理特性,以牛頓法求解金屬圓柱波導之色散關係式,找到在兩種不同結構MIM(Metal-Insulator-Metal )與IMI(Insulator-Metal- Insulator) 之圓柱波導中,低於PEC材質之截止頻率之仍可傳遞的表面電漿模態。接著以有限差頻域法(FDFD, Finite Difference Frequency-Domain)驗證此種表面電漿波的各種方向分量分佈。
在整篇研究中我們得到幾個重要的結論:第一,入射頻率在金屬波導的表面電漿頻率 以下,在介面上會產生表面電漿波的共振模態,具有非常好的介面性質。相較於同尺寸的PEC圓柱波導,金屬圓柱波導在傳播頻率低於前者的截止頻率之下仍可傳遞表面電漿波。第二,以FDFD法模擬金屬圓柱波導的場形分佈,結構所對應的邊界條件必須確實考慮才能模擬出正確的模態分佈以及電磁場圖形。但在不規則形狀的結構模擬時,則必需引入介電常數平均分配法增加模擬的精確性。
Waveguide communication has been the most important method for electormagnetic wave propagation since the 18th century . While the growing of nano technology,nano-scale waveguide is widely used in cpu and chips . Nevertheless , company with the more and more smaller size of waveguide structure,the cutoff frequency of nano waveguide is reaching about Hz . How to overcome the high frequency coulping noise in nano waveguide become a interesting problem sicentists concern about . In this thesis , I discuss the special physical behavior of Surface Plasmon wave , using Netwon method to solve the metal cylindrical waveguide’s dispersion relation , finding Surface Plasmon mode can propagate even below PEC structure’s cutoff frequency in two kind of metallic structrue (Metal-Insulator-Metal & nsulator-Metal- Insulator) cylindrical waveguide . And continually I use FDFD(Finite Difference Frequency-Domain) method to verify Sufrace Plasmon wave’s validity .
In this thesis , I make some conclusions:First, below the metal surface plasmon frequency at metal waveguide , surface plasmon oscillation mode propagate at metllic interface . Compared PEC structure with same size , surface wave propagate at frequency lower than PEC waveguide’s cutoff frequency . Second ,
when simulate metllic cylindrical waveguide’s electromangetic wave pattern , boundary condition must be applied . While engaged in non-uniform structure simulation , otherwise I used dielectric constant index averaging skill to improve the accuracy of simulating .
[1]. E. A. Stern and R. A. Ferrel, “Surface Plasma Oscillations of a Degenerate Electron Gas,” Physical Review, vol.120, pp.130-136, 1960.
[2]. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye,1, and D. W. Pohl1,“Local Excitation, Scattering,
and Interference of Surface Plasmons,” Phys. Rev. Lett. Vol 77, Num 9, pp. 1889-1892, 1996.
[3]. Ki Young Kim, “Fundamental guided electromagnetic dispersion characteristics in lossless
dispersive metamaterial clad circular air-hole waveguides” , J. Opt. A:Pure Appl. Opt. vol.9
pp.1062, 2007
[4]. 邱國斌 蔡定平,” 左手材料奈米平板的表面電漿量子簡介”,物理雙月刊, 25卷第三期 ,2003
[5]. H. Raether, in“Surface Plasmons on Smooth and Rough Surfaces and on Gratings,”Springer
Tracts in Modern Physics, Vol. 111, 1988.
[6]. 邱國斌,蔡定平,物理雙月刊28卷第二期, pp.472-483, 2006.
[7]. H. Raether, Surface Plasmons, Springer, New York, 120, 1988.
[8]. C. A. Pfeiffer and E. N. Economou. “Surface polaritons in a circularly cylindrical interface:
Surface plasmons”, Phys. Rev. B, v10, 3038 ,1974
[9]. J.J. BURKE, G.I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,”Phys. Rev. vol.33, number8, 1986.
[10]. A.Taflove and S. C. Hagness,” Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition” ARTECH HOUSE, 2005
[11]. Ursula Schröter and Alain Dereux,” Surface plasmon polaritons on metal cylinders with dielectric core”, Phys. Rev. B v64, pp 125420, 2001
[12]. F. I. Baida*, A. Belkhir, and D. Van Labeke,” Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes”, Phys. Rev. B v74, pp 205419, 2006
[13]. Z. Zhu and T. G. Brown, "Full-vectorial finite-difference analysis of microstructured optical fibers", Opt. Express, vol. 10, no. 17, pp. 853-864
[14]. Neil W. Ashcroft; N. David Mermin (1976). Solid State Physics. Saunders College. pp. 11
[15].吳民耀,劉威志,物理雙月刊28卷第二期, pp.486, 2006.
[16].U.S.Inan and A.S.Inan, “Electromagnetic Wave” , Prentice Hall, 2000
[17].A.Yariv and P.Yeh, “Photonic”, Oxford, New York, 2007
[18]. L. Novotny and C. Hafner ,”Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function”, Phys. Rev. E V.50, pp.4094 ,1994
[19]. Hocheol Shin, Peter B. Catrysse, and Shanhui Fan,” Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes”, Phys. Rev. B 72, 085436, 2005
[20]. C.P. Yu and H.C. Chang,“Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers”Opt. Express, vol. 12, no. 25, pp. 6165-6177 ,2004
[21]. C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Optics Express, vol. 12, no. 7, pp.1397, 2004.
[22]. G. Mur,“Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations”IEEE Trans. Electromagnetic Compatibility Vol.23,pp.377-382,1981.
[23]. J. P. Berenger, “A perfectly Matched Layer for the Absorption of Electromagnetic Waves,” J. Comput. Phys., 114(2): 185-200, 1994.
[24]. J. P. Berenger,“Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,”J. Comput. Phys., 127(2):363~379, 1996.
[25]. J. P. Berenger,“Perfectly Matched Layer for the FDTD Solution of Wave Structure Interaction Problems,”IEEE Trans.on Antennas and Propagation, AP-44[1]:110-117, 1996.