簡易檢索 / 詳目顯示

研究生: 吳佳容
Wu, Chia-Jung
論文名稱: 混合式軟體定義網路中考慮動態流量並共同最大化節能與壅塞避免
Jointly Maximize Energy Saving and Congestion Avoidance in Hybrid SDN with Traffic Dynamics
指導教授: 林輝堂
Lin, Hui-Tang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 67
中文關鍵詞: 節能負載平衡軟體定義網路混合式軟體定義網路
外文關鍵詞: Energy saving, Congestion avoidance, Software Defined Networks, Hybrid Software Defined Networks
相關次數: 點閱:123下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年來互聯網使用人口與流量快速增長,網路設備不斷加入互聯網以滿足使用者對於網路傳輸的需求。現今的網路設備,因其控制和數據轉發功能整合在一起,同時網路協定採取分散式協作模式,因此網路設備必須一直保持開啟狀態以使整體網路運作順暢,導致無法有效節能,使其能源消耗佔全球能源消耗相當程度的比重,在全球日益暖化的今天,如何有效降低網路耗能並能保持網路通訊效能是一個極為重要且亟待解決的問題。
    軟體定義網路是近年來新興的網路技術,因其能使資料網路更靈活、更易於操作和管理、及能夠更好地應對應用程式發展和網路條件不斷變化的需求、以及成本控制,預期將成為下一世代的主流網路技術。由於其將原本同一網路設備內控制部分與封包轉發部分分離,將同一網路中所有網路設備的控制部分全部整合到單一設備稱為控制器,利用其中央集中式的控制模式可以實現即時監控流量,並且非常快速地重新調整網路以達成特定目標(例如,最大化網絡利用率或平衡鏈路利用率)。因此,它將能有效改善網路的整體性能,並且降低網路運作的耗能,提高能源效率。然而過去的研究只著重在單一目標的最佳化,如負載平衡或節能,並未一起考慮網路節能與避免網路壅塞的問題,而且也未考慮日常網絡流量其實變動相當劇烈,在流量高峰與低峰時,應該如何採取不同的策略以同時達到有效的節能與避免網路壅塞。因此,本論文針對此一問題,我們提出一套機制使軟體定義網路甚至是混合式的軟體定義網路在網路流量變動下,有效地降低耗能同時避免網路壅塞。另外,我們也針對傳統網路如何逐漸改變成軟體定義網路提出一項遷移機制,使網路在轉換的過程中依然讓網路耗能和網路壅塞機率最小化。本研究透過廣泛的模擬,顯示我們提出的機制有良好的效能,在避免網路壅塞的前提下,平均可以節省大約40%的能源消耗。另外,我們提出的遷移機制也能在最小化網路壅塞機率下,有效降低能源消耗,由模擬的結果顯示,當網絡中存在約60%的軟體定義網路節點時,平均可節約40%的能源消耗。

    With the rapid growth of population and traffic in the Internet in recent years, network devices join the Internet almost continuously in order to meet users' needs for network transmission. As a result, today’s networking hardware systems are required to run almost around the clock in order to keep the network running smoothly. Consequently, the global energy consumption of communication networks is extremely high. The problem is exacerbated by the fact that the control plane and data forwarding plane are often embedded in the same device in current networks, while network protocols are usually designed to operate in a distributed manner. Thus, with today's increasing focus on environmental issues, devising the means to effectively reduce network energy consumption while simultaneously maintaining the performance of network communications is an extremely important but challenging problem.
    Software Defined Networking is a newly-introduced networking paradigm, in which the control plane is separated from the forwarding plane and moved to a globally-aware software controller. By exploiting a centralized control mode, the network traffic can be monitored in real time and rapidly rerouted as required to satisfy different objectives, such as maximizing the network utilization, achieving load balance, and improving the energy efficiency. However, previous researches have focused only on the optimization of a single goal, such as load balancing or energy saving. Moreover, they have generally ignored the dynamic characteristics of the traffic load in most networks. Consequently, a need still exists for effective strategies capable of simultaneously maximizing the network energy efficiency and preventing congestion avoidance under both light and heavy traffic load conditions.
    Accordingly, this thesis proposes a mechanism for reducing the energy consumption and avoiding network congestion in software-defined networks with a variable traffic load. In addition, a migration mechanism is proposed to minimize the energy consumption and congestion probability for the case where a traditional network is gradually upgraded to a software-defined network. Through extensive simulations, it is shown that the proposed mechanism has a good performance and reduces the energy consumption by around 40% on average under the premise of congestion avoidance. Moreover, the proposed migration mechanism also reduces the energy consumption by 40% on average while minimizing the probability of network congestion given around 60% of SDN nodes in the hybrid network.

    摘要 I Abstract III Acknowledgements V Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 Overview 1 1.2 Software Defined Networks 3 1.3 Hybrid Software Defined Networks 4 1.4 SDN and Hybrid SDN Network Optimization 5 1.5 Motivation 5 1.6 Objective 7 1.7 Thesis Outline 8 Chapter 2 Background and Related Work 9 2.1 Background 10 2.1.1 Software-Defined Networking 10 2.1.2 OpenFlow 11 2.1.3 Network Complexity Analysis 12 2.2 Related Works 13 2.2.1 Energy Saving Technology 13 2.2.2 Energy Saving in SDN 14 2.2.3 Hybrid SDN Migration 15 2.2.4 Energy Saving in Hybrid SDN 16 2.2.5 Congestion Avoidance in Hybrid SDN 17 Chapter 3 Jointly Maximize Energy Saving and Congestion Avoidance in Hybrid SDN with Traffic Dynamics 18 3.1 Network Scenario 19 3.2 Migration Scheduler 20 3.2.1 Proposed Migration Strategy 20 3.2.2 Computational Complexity 21 3.3 System Model 21 3.3.1 Global Topology Viewer Module 22 3.3.2 Traffic Engineering Module 24 3.3.3 Forecast Module 29 3.3.4 Monitor Module 30 3.4 Implementation 33 Chapter 4 Performance Evaluation 34 4.1 Simulation System 35 4.2 Comparison Methods 37 4.3 Simulation Results 38 4.3.1 Topology 38 4.3.2 Simulations Results for Hybrid SDN 40 4.3.3 Simulations in Full SDN 51 Chapter 5 Conclusion 60 Bibliography 62

    [1] The Climate Group SMART 2020 Report, “SMART2020: Enabling the Low Carbon Economy in the Information Age,” June 2008. [Online]. Available: https://www.theclimategroup.org/
    [2] M. Pickavet, W. Vereecken, S. Demeyer, P. Audenaert, B. Vermeulen, C. Develder, D. Colle, B. Dhoedt, and P. Demeester, “Worldwide energy needs for ICT: The rise of power-aware networking,” in Proc. IEEE ANTS, Bombay, India, Dec. 2008, pp. 1-3.
    [3] A. Bianzino, C. Chaudet, D. Rossi, J.-L. Rougier, “A survey of green networking research,” IEEE Commun. Surveys Tutorials, vol. 14, no. 1, pp. 3-20, 2012.
    [4] L. Chiaraviglio, M. Mellia, F. Neri, “Minimizing ISP network energy cost: Formulation and solutions,” IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp. 463-476, Apr. 2012.
    [5] D. Kreutz et al., “Software-defined networking: A comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.
    [6] N.McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, J. Turner, “OpenFlow: Enabling Innovation in Campus Networks”, ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69-74, Mar. 2008.
    [7] OpenFlow Switch Consortium. [Online]. Available: http://www.openflowswitch.org/.
    [8] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hlzle, S. Stuart, A. Vahdat, “B4: Experience with a Globally-Deployed Software Defined WAN,” Proceedings of the ACM SIGCOMM 2013 Conference, pp. 3-14, 2013.
    [9] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and R. Wattenhofer, “Achieving high utilization with software-driven wan,” Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM, pp. 15–26, August 12-16, 2013.
    [10] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and research challenges of hybrid software defined networks,” SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 70-75, Apr. 2014.
    [11] S. Agarwal, M. Kodialam, T. Lakshman, “Traffic engineering in software defined networks,” Proc. IEEE INFOCOM, pp. 2211-2219, Apr. 2013.
    [12] D. Levin, M. Canini, S. Schmid, F. Schaffert, and A. Feldmann, “Panopticon: Reaping the benefits of incremental SDN deployment in enterprise networks,” Proc. USENIX Annu. Tech. Conf., pp. 333-345, Jun. 2014.
    [13] David Ke Hong, Yadi Ma, Sujata Banerjee, and Z. Morley Mao, “Incremental Deployment of SDN in Hybrid Enterprise and ISP Networks,” Proceedings of the 2nd ACM SIGCOMM Symposium on Software Defined Networking Research(SORS 16), page Article No. 1, 2016.
    [14] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic engineering in SDN-OpenFlow networks,” Comput. Netw., vol. 71, pp. 1–30, Oct. 2014.
    [15] A . Markiewicz, N. T. Phuong, A. Timm-Giel, “Energy consumption optimization for software defined networks considering dynamic traffic,” IEEE 3rd International Conference on Cloud Networking (CloudNet), pp. 155-160, 2014.
    [16] F. Giroire, J. Moulierac, and T. K. Phan, “Optimizing Rule Placement in Software-Defined Networks for Energy-aware Routing,” Proc. GLOBECOM, pp. 2523-2529, Dec. 2014.

    [17] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall, “Reducing network energy consumption via sleeping and rate adaptation,” Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, p.323-336, April 16-18, 2008.
    [18] X. Wang, Y. Yao, X. Wang, K. Lu, Q. Cao, “Carpo: Correlation-aware power optimization in data center networks,” INFOCOM, pp. 1125-1133, 2012.
    [19] D. Kakadia, V. Varma, “Energy Efficient Data Center Networks – A SDN based Approach,” IBM Technical Report, 2012.
    [20] A. Botta, A. Dainotti, A. Pescapè, “A tool for the generation of realistic network workload for emerging networking scenarios,” Computer Networks (Elsevier), 2012, Volume 56, Issue 15, pp 3531-3547.
    [21] M. E. J. Newman, “The mathematics of networks,” The New Palgrave Encyclopedia of Economics, Palgrave Macmillan, Basingstoke, 2008.
    [22] D. Katsaros N. Dimokas and L. Tassiulas, “Social Network Analysis Concepts in the Design of Wireless Ad Hoc Network Protocols,” IEEE Netw., vol. 24, no. 6, pp. 23-29, Nov./Dec. 2010.
    [23] S. Haykin, “Adaptive Filter Theory,” Prentice Hall, 2002.
    [24] Open Networking Foundation (ONF), “OpenFlow switch specification,” Tech. Rep., September 2012. [Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.1.pdf
    [25] T. Nguyen Huu, N. Pham Ngoc, H. Truong Thu, T. Tran Ngoc, D. Nguyen Minh, V. G. Nguyen, H. Nguyen Tai, T. Ngo Quynh, D. Hock, and C. Schwartz, “Modeling and experimenting combined smart sleep and power scaling algorithms in energy-aware data center networks,” Simulation Modelling Practice and Theory, 2013.
    [26] Mininet. [Online]. Available: http://mininet.org/overview/
    [27] Gurobi Optimizer 7.0. [Online]. Abailable: http://www.gurobi.com/
    [28] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, “SNDlib 1.0 - survivable network design library,” Networks, 55(3):276–286, 2010.
    [29] Pham Ngoc Nam, Nguyen Huu Thanh, Vu Quang Trong, Tran Hoang Vu, Truong Thu Huong, Phuoc Tran-Gia and Christian Schwartz, “A New Power Profiling Method and Power Scaling Mechanism for Energy-Aware NetFPGA Gigabit Router”, Elsevier's Journal of Computer Networks Special Issue on Green Communications.
    [30] H. Wang, Y. Li, D. Jin, P. Hui, J. Wu, “Saving Energy in Partially Deployed Software Defined Networks,” IEEE Trans. Comput., vol. 65, no. 5, pp. 1578-1592, 2016.
    [31] A. L. Barabási and R. Albert “Emergence of scaling in random networks”, Science, vol. 286, pp 509-512, 1999.
    [32] Kenneth DL, Ronald KK (1982) Advances in business and management forecasting. Emerald books, UK
    [33] F. Pakzad, M. Portmann, W. L. Tan, J. Indulska, “Efficient topology discovery in software defined networks,” Proc. 8th Int. Conf. Signal Process. Commun. Syst. (ICSPCS), pp. 1-8, Dec. 2014
    [34] GENI Wiki. [Online]. Available: http://groups.geni.net/geni/wiki/OpenFlowDiscoveryProtocol
    [35] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, R. Johari, “Plug-n-serve: Load-balancing web traffic using openflow,” ACM SIGCOMM Demo, 2009.
    [36] R. Wang, D. Butnariu, J. Rexford, “OpenFlow-based server load balancing gone wild,” Proc. 11th USENIX Conf. Hot Topics Manage. Internet Cloud Enterprise Netw. Services, pp. 12, 2011.
    [37] N. Mckeown, “How SDN will Shape Networking,” October 2011. [Online]. Available: https://www.youtube.com/watch?v=c9-K5O_qYgA
    [38] S. Schenker, “The future of networking the past of protocols,” Oct. 2011. [Online]. Available: https://www.youtube.com/watch?v=YHeyuD89n1Y
    [39] H. Kim, N. Feamster, “Improving network management with software defined networking,” IEEE Commun. Mag., vol. 51, no. 2, pp. 114-119, Feb. 2013.
    [40] Open Networking Foundation (ONF). [Online]. Available: https://www.opennetworking.org/
    [41] [Online]. Available: https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
    [42] SNDlib. [Online]. Available: http://sndlib.zib.de/home.action
    [43] U. Brandes, “A faster algorithm for betweenness centrality,” J. Math. Sociol., 25 (2001), pp. 163–177
    [44] Wikipedia - Link Layer Discovery Protocol [Onlene]. Available: https://en.wikipedia.org/wiki/Link_Layer_Discovery_Protocol
    [45] T. Das, M. Caria, A. Jukan, and M. Hoffmann, “Insights on SDN migration trajectory,” in Proc. IEEE ICC, London, U.K., 2015, pp. 5348–5353.
    [46] Reitblatt Mark, Foster Nate, Rexford Jennifer, Cole Schlesinger, Walker David, “Abstractions for network update,” Proc. ACM SIGCOMM 2012 conf. on Applications technologies architectures and protocols for computer commun. SIGCOMM '12, pp. 323-334, 2012.
    [47] Naga Praveen Katta , Jennifer Rexford , David Walker, “Incremental consistent updates,” Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking, August 16-16, 2013.
    [48] Xin Jin , Hongqiang Harry Liu , Rohan Gandhi , Srikanth Kandula , Ratul Mahajan , Ming Zhang , Jennifer Rexford , Roger Wattenhofer, “Dynamic scheduling of network updates,” Proceedings of the 2014 ACM conference on SIGCOMM, August 17-22, 2014.
    [49] T. Mizrahi, Y. Moses, “Time-based updates in software defined networks,” Proc. ACM HotSDN, pp. 163-164, 2013.
    [50] T. Mizrahi, E. Saat, Y. Moses, “Timed consistent network updates,” Proc. ACM SIGCOMM Symp. SDN Res. (SOSR), 2015.
    [51] T. Mizrahi, Y. Moses, “The case for data plane timestamping in SDN,” Proc. IEEE INFOCOM Workshop Softw.-Driven Flexible Agile Netw. (SWFAN), pp. 856-861, Apr. 2016.

    下載圖示 校內:2022-07-31公開
    校外:2022-07-31公開
    QR CODE