| 研究生: |
張慈珈 Chang, Tzu-Jia |
|---|---|
| 論文名稱: |
燒結環境與含鉻廢棄物添加對燒製富貝萊土水泥之影響 The effects of sintering environment and Cr-bearing waste on the formation of β-C2S cement |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 燒結環境 、矽酸二鈣 、重金屬污泥 、六價鉻 、溶出試驗 |
| 外文關鍵詞: | sintering environment, dicalcium silicate, heavy metal sludge, Cr(VI), leaching test |
| 相關次數: | 點閱:117 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因應台灣水泥原料匱乏及改善水泥製程能源消耗問題,本研究利用牡蠣殼灰、稻殼灰、淨水污泥及轉爐石等無機廢棄物做為水泥替代生料,調配電鍍污泥及皮革污泥,利用含重金屬污泥作為穩定矽酸二鈣(Ca2SiO4,C2S)中β相外加離子來源,同時搭配還原環境燒製富貝萊土水泥(belite rich cement)。透過還原環境燒製熟料使其中Cr化合物以低移動性之Cr(III)型態存在,後續利用溶出試驗檢視不同燒結環境之燒成熟料中重金屬溶出特性,探討燒結環境對熟料C2S生成及Cr價數轉變之影響。
研究結果顯示,以純化合物調配水泥生料於不同環境燒結時,還原環境有助於增加β-C2S晶相生成,並且同時可降低約10 wt.%之γ-C2S。另外,以電鍍污泥及皮革污泥調配上述無機廢棄物取代生料,利用氧化或還原環境燒結皆可成功燒製出富貝萊土水泥。當添加14 wt.%電鍍污泥於水泥生料中,燒成熟料之β-C2S含量約為77~79 wt.%,而γ-C2S含量皆低於0.8 wt.%。利用皮革污泥調配之水泥生料,其燒成熟料中β-C2S含量最高可達77 wt.%,且γ-C2S含量皆低於1 wt.%。在鉻(Cr)價數轉變方面,氧化環境會使熟料中六價鉻(Cr(VI))含量增加,而還原環境則可有效使熟料中Cr超過90%皆以Cr(III)存在。由溶出試驗結果可知,調配電鍍污泥與皮革污泥於氧化環境燒製之熟料,於醋酸溶液中其Cr溶出率達68%,遠高於還原環境燒製熟料之Crtotal最高溶出率0.29%。綜合而言,含Cr污泥調質水泥生料於燒製過程有部分重金屬逸散現象,而燒成熟料後續做成水泥產品應用或廢棄時,氧化環境燒製熟料之Cr溶出較高,還原環境燒製熟料則幾乎無溶出現象。因此含Cr污泥於水泥資材化過程中,利用還原環境燒製可將Cr以Cr(III)化合物存在,減低對環境危害機率,符合環境友善原則。
Cement is an important building materials in Asian countries. Due to the limitation of raw material for cement in Taiwan and huge energy consumption during the process of cement production, this study focus on using four types of inorganic wastes including oyster husk ash, rice husk ash, water treatment plant sludge and basic oxygen furnace slag as substitution of raw material in cement production. Belite rich cement is sintered by stabilizing β phase in dicalcium silicate (Ca2SiO4,C2S) using heavy metals from electroplating sludge and leather sludge under reduction environment. Through the control of sintering environment, Cr is presented as Cr(III) which has low mobility in material. In addition, leaching behavior of heavy metal after clinkered in different environments is preformed by leaching tests to evaluate the effect of sintering environment towards formation of C2S and transformation of Cr valancy.
The results from chemically mixed cement clinkers revealed reduction environment could engage the growth of β-C2S crystalline phase and reduced 10 wt.% of γ-C2S formation. Further investigation by replacing cement raw materials with electroplating sludge and leather sludge successfully produced belite rich cement. With 14 wt.% of electroplating sludge addition, sintered cement contained 77-79 wt.% of β-C2S with γ-C2S lower than 0.8 wt.%. While addition of leather sludge sintered cement had 77 wt.% of β-C2S and formation of γ-C2S was lower than 1 wt.%. According to the transformation of Cr valancy in clinkers, sintered under oxidation environment could increased the formation of Cr(VI) and with reduction environment, Cr was controlled in the form of Cr(III) with over 90% composition in total Cr.
From the leaching tests, the leaching of Cr from chemical clinkers sintered under oxidation environment was higher than those sintered under reduction environment. After substitution of electroplating sludge and leather sludge into cement clinkers, a leaching of 68% of total Cr was observed in acetic acid. As Cr in clinkers sintered under reduction environment was in the form of Cr(III), the leaching of total Cr was only 0.29%.
Concluded from above observations, although cement sintered with chrome sludge substitution may result in vaporization of heavy metals under reduction environment, the leaching of Cr from cement was much lower than those sintered under oxidation environment. Therefore, materialization of chrome sludge in cement production under reduction environment could stabilize Cr in the form of Cr(III) which not only decrease the risk to the environmental but also achieve the principle of environmental friendly characteristics.
Adolfsson, D. (2006). Steelmaking slag as raw material for sulphoaluminate belite cement. Advances in Cement Research, 19(4), 147-156.
Basegio, T., Haas, C., Pokorny, A., Bernardes, A. M., & Bergmann, C. P. (2006). Production of materials with alumina and ash from incineration of chromium tanned leather shavings: Environmental and technical aspects. Journal of Hazardous Materials, B137, 1156-1164.
Beverskog, B. & Puigdomenech, I. (1997). Revised Pourbaix diagrams for chromium at 25-300℃. Corrosion Science, 29(1), 43-57.
Bulut, U., Ozverdi, A., & Erdem, M. (2009). Leaching behavior of pollutants in ferrochrome arc furnace dust and its stabilization/solidification using ferrous sulphate and Portland cement. Journal of Hazardous Materials, 162, 893-898.
Bhatty, J. & West, P. (1996). Stabilization of heavy metals in Portland cement matrix: effects on paste properties. ASTM Special Technical Publication, 1240, 147-162.
Channell, M. G. & Kosson, T. T. (1993). An evaluation of stabilization/solidification of a K088 spent portliner waste, Technical Report EL-93-12, US Army Engineer Waterways Experiment Station, Vicksburg, MS.
Cullity, B. D. & Stock, S. R. (2001). Elements of X-Ray Diffraction. Upper Saddle River: Prentice Hall.
Chuan, M. C. & Liu, J. C. (1996). Release behavior of chromium from tannery sludge. Water Research, 30(4), 932-938.
Chen, I. A. & Juenger, M. C. G. (2009). Incorporation of waste materials into Portland cement clinker synthesized from reagent-grade chemicals. International Journal of Applied Ceramic Technology, 6(2), 270-278.
Chen, H. X., Ma, X. W., & Dai, H. J. (2010). Reuse of water purification sludge as raw material in cement production. Cement & Concrete Composites, 32, 436-439.
Chen, Y. L., Shih, P. H., Chiang, L. C., Chang, Y. K., Lu, S. C., & Chang, J. E. (2009). The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. Journal of Hazardous Materials, 170, 443-448.
Chan, C. J., Kriven, W. M., & Young, J. F. (1992). Physical stabilization of the β→γ transformation in dicalcium silicate. Journal of the American Ceramic Society, 75(6), 1621-1627.
Eary, L. E., & Rai, D. (1988). Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environmental Science and Technology, 22, 1187-1193.
Fouad, N. E., Halawy, S. A., Mohamed, M. A., & Zaki, M. I. (1999). Thermal and spectroscopic studies of chromium chromate hexahydrate – a likely composition for redox surface of calcined chromia catalysts. Thermochimica Acta, 329, 23-29.
Fukuda, K., Ito, S., & Taguchi, H. (1998). Thermoelasticity of belite in Portland cement clinker. Cement and Concrete Research, 28(8), 1141-1145.
Fukuda, K. & Ito, S. (1999). Highly reactive remelted belite. Journal of the American Ceramic Society, 82(3), 637-640.
Fukuda, K. & Ito, S. (1999). Improvement in reactivity and grindability of belite-rich cement by remelting reaction. Journal of the American Ceramic Society, 82(8), 2177-2180.
Fukuda, K., Maki, I., & Ito, S. (1992). Remelting reaction within belite crystals during cooling. Journal of the American Ceramic Society, 75(10), 2896-2898.
Fregert, S. & Gruvberger, B. (1973). Factors decreasing the content of water soluble chromate in cement. Acta Dermato-Venerologica, 53, 267-270.
Fregert, S., Gruvberger, B., & Sandahl, E. (1979). Reduction of chromate in cement by iron sulfate. Contact Dermatitis, 5, 39-42.
Gies, A. & Knoefel, D. (1986). Influence of alkalies on the composition of belite-rich cement clinkers and the technological properties of the resulting cement. Cement and Concrete Research, 16(3), 411-422.
Gartner, E. (2004). Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 34(9), 1489-1498.
Habeeb, G. A. & Fayyadh, M. M. (2009). Rice husk ash concrete: the effect of RHA average particle size on mechanical properties and drying shrinkage. Australian Journal of Basic and Applied Sciences, 3(3), 1616-1622.
Hewlett, P. C. (1998). Lea’s Chemistry of Cement and Concrete. New York: Arnold.
Johnson, C. A. & Xyla, A. G. (1991). The oxidation of chromium(III) to chromium(VI) on the surface of manganite (γ-MnOOH). Geochimica Cosmochimica Acta, 55, 2861-2866.
Jenkins, R. & Synder, R. L. (1996). Introduction to X-ray Powder Diffractometry. John Wiley & Sons, New York.
Karamalidis, A. K. & Voudrias, E. A. (2009). Leaching and immobilization behavior of Zn and Cr from cement-based stabilization/solidification of ash procedure from incineration of refinery oily sludge. Environmental Engineering Science, 26(1), 81-96.
Kakali, G., Parissakis, G., & Bouras, D. (1996). A study on the burnability and the phase formation of PC clinker content Cu oxide. Cement and Concrete Research, 26(10), 1473-1478.
Kacimi, L., Simon-Masseron, A., Ghimari, A., & Derriche, Z. (2006). Influence of NaF, KF and CaF2 addition on the clinker burning temperature and its properties. Comptes Rendus Chimie, 9(1), 154-163.
Karlovic, E. S., Dalmacija, B. D., Tamas, Z. S., Prica, M. D., & Ranogajec, J. G. (2008). Preliminary evaluation of galvanic sludge immobilization in clay-based matrix as an environmentally safe process. Journal of Environmental Science and Health Part A, 43, 528-537.
Kim, Y. M. & Hong, S. H. (2004). Influence of minor ions on the stability and hydration rates of β-dicalcium silicate. Journal of the American Ceramic Society, 87(5), 900-905.
Kim, Y. M., Hong, S. H., & Kim H. (2002). Synthesis and hydration characteristics of alinite cement. Journal of the American Ceramic Society, 85(8), 1941-1946.
Kilua, H. W. & Shah, I. D. (1984). Chromium bearing waste slag: evaluation of leachability when exposed to simulated acid rain. In : Jackson, L. P. & Rohlik, A. R. (Eds.), Third Symposium, Harzardous Industrial Waste Management and Testing, Philadephia: ASTM STP, 851, 61-81.
Kantautas, A. Palubinskaite, D., & Vaickelionis, G. (2006). Synthesis and hardening of fluoralinite cement. Materials Science, 24(21), 385-393.
Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A critical assessment of chromium in the environment. Critical Reviews in Environment Science and Technology, 29(1), 1-46.
Lai, G. C., Nojiri, T., & Nakano, K. (1992). Studies of the stability of β-Ca2SiO4 doped by minor ions. Cement and Concrete Research, 22(5), 743-754.
Matouschek, F. (1962). The influence of chromium-containing bricks on the chromate content of cement clinker. Zement-Kalk-Gips, 15(11), 496-498.
Motzet, M., Pollmann, H., & Neubauer, J. (1995). Alinite chemical composition, solid solution and hydration behavior. Cement and Concrete Research, 25(8), 1808-1810.
Ma, P., Lindblom, B., & Bjorkman, B. (2005). Mechanism study on solid-state reduction in the Fe2O3-NiO-Cr2O3-C system using thermal analyses. Scandinavian Journal of Metallurgy, 34, 22-30.
Ozturk, A., Suyadal, Y., & Oguz, H. (2000). The formation of belite phase by using phosphogypsum and oil shale. Cement and Concrete Research, 30, 967-971.
Pritts, I. M. & Daugherty, K. E. (1976). The effect of stabilizing agents on the hydration rate of β-C2S. Cement and Concrete Research, 6(6), 783-795.
Philippou, T., Marinos, J., & Kostakis, G. (1988). On the strength behavior and phase composition of low lime saturation clinkers. Cement and Concrete Research, 18(5), 804-811.
Prokisch, J., Katz, S. A., Kovacs, B., & Gyori, Z. (1997). Speciation of chromium from industrial waste and incinerated sludge. Journal of Chromatography A, 774, 363-371.
Rajczy, K. (1990). Effect of a reducing atmosphere on the properties of dicalcium orthosilicate. Cement and Concrete Research, 20(1), 36-44.
Raina, K. & Janakiraman, L. K. (1998). Use of mineralizer on black meal process for improved clinkerization and conservation of energy. Cement and Concrete Research, 28(8), 1093-1099.
Rinehart, T. L., Schulze, D. G., Bricka, R. M., Bajt, S., & Blatchley, E. R. (1997). Chromium leaching vs. oxidation state for a contaminated solidified/stabilized soil. Journal of Hazardous Materials, 52, 213-221.
Ract, P. G., Espinosa, D. C. R., & Tenorio, J. A. S. (2003). Determination of Cu and Ni incorporation ratios in Portland cement clinker. Waste Management, 23, 281-285.
Shirasaka, T., Hanehara, S., & Uchikawa, H. (1996). Influence of six minor and trace elements in raw material on the composition and structure of clinker. World Cement, 27(3), 102-115.
Shi, H. S., Deng, K. M., Yuan, F., & Wu, K. (2009). Preparation of the saving-energy sulphoaluminate cement using MSWI fly ash. Journal of Hazardous Materials, 169, 551-555.
Stutzman, P. E. (1996). Guide for X-Ray powder diffraction analysis of Portland cement and clinker. National Institute of Standards and Technology. Gaithersburg.
Synder, R. L. (1992). The use of reference intensity ratio in X-ray quantitative analysis. Powder Diffraction, 7(4), 186-193.
Snyder, R. L. & Bish, D. L. (1989). Quantitative analysis. In: Bish, D.L. & Post J.E.(Eds.), Reviews in Mineralogy, Mineralogical Society of America, Washington, DC.
Schwiete, H. E., Kronert, W., & Deckert, K. (1968). Existence range and stabilization of high temperature modification of dicalciumsilicate. Zement Kalk Gips, 21(9), 359-366.
Solonetskii, V. G., Topilina, O. R., Rogovets, I. E., Ponomareva, T. A., Topol’ nitskaya, L. M., & Vavilova, A. S. (1989). Manufacture of hexavalent chromium-free cement for asbestos-cement products. Tsement, 10, 14-15.
Singh, I. B., Chaturvedi, K., & Yegneswaran, A. H. (2007). Thermal immobilization of Cr, Cu and Zn of galvanizing wastes in the presence of clay and fly ash. Environmental Technology, 28, 713-721.
Schroeder, D. C., & Lee, G. F. (1975). Potential transformations of chromium in natural waters. Water, Air, & Soil Pollution, 4, 355-365.
Takano, C., Zambrano, A. P., Nogueiba, A. E., Mourao, M. B., & Iguchi, Y. (2007). Chromite reduction reaction mechanisms in carbon-chromites composite agglomerates at 1773k. Iron and Steel Institute of Japan International, 47(11), 1585-1589.
Trezza, M. A. & Scian, A. N. (2007). Waste with chrome in the Portland cement clinker production. Journal of Hazardous Materials, 147, 188-196.
Taylor, H. F. W., (1990). Cement Chemistry. London: Academic Press.
Tahiri, S., Albizane, A., Messaoudi, A., Azzi, M., Bennazha, J., Younssi, S.A., & Bouhria, M. (2007). Thermal behavior of chrome shavings and of sludges recovered after digestion of tanned solid wastes with calcium hydroxide. Waste Management, 27, 89-95.
Uda, S., Asakura, E., & Nagashima, M. (1998). Influence of SO3 on the phase relationship in system CaO-SiO2-Al2O3-Fe2O3. Journal of the American Ceramic Society, 81(3), 725-729.
Waldemar, A. (1994). Hexavalent chromium in Portland cement. Cement, Concrete, and Aggregates, 16(1), 43-47.
Wei, Y. L., Hsu, L. H., Wang, H. P., & Chen, K. W. (2007). XAS study of chromium recoverable from plating sludge. Journal of Electron Spectroscopy and Related Phenomena, 156, 204-207.
Xiuji, F. & Shizong, L. (1986). Investigation of the effect of minor ions on the stability of β-C2S and the mechanism of stabilization. Cement and Concrete Research, 16(4), 587-601.
Xu, G. R., Zou, J. L., & Li, G. B. (2008). Solidification and leaching behaviors of Cr6+ in sludge ceramsite. Journal of Hazardous Materials, 153, 1031-1035.
王靜逸,淨水廠污泥再利用技術及用途評估之研究,國立交通大學環境工程系,碩士論文,2008。
吳怡虹,重金屬對無機廢棄物燒製富貝萊土水泥之影響,國立成功大學環境工程學系,碩士論文,2009。
李忠憲,紫外光-二氧化鈦/氧化鋅與水中Cr(VI)光化作用之研究,嘉南藥理科技大學環境工程與科學系,碩士論文,2008。
李哲榮,牡蠣殼粉資源化做為水泥膠結材料之研究,國立臺灣海洋大學河海工程學系,碩士論文,2005。
林士欽,台灣地區水泥製造業NOX與CO2排放特性及DeNOX設施成效探討,國立中央大學環境工程研究所,碩士論文,2007。
張宜中,添加轉爐石粉對於混凝土耐久性影響之研究,國立海洋大學河海工程學系,碩士專班研究成果,2007。
張毓寬,鉻污泥資源化基礎研究,國立成功大學資源工程學系,碩士論文,2002。
陳宗裕,燒製參數對無機廢棄物合成水泥熟料晶相之影響,國立成功大學環境工程學系,碩士論文,2008。
陳宜晶,利用添加劑提升淨水污泥燒結之材料品質研究,逢甲大學環境工程與科學學系,碩士論文,2004。
黃兆龍,混凝土性質與行為,詹式書局,三版,臺北市,2005。
勞工安全衛生研究所 http://www.iosh.gov.tw
廖慕蓉,淨水污泥燒製富β-C2S水泥之研究,國立成功大學環境工程學系,碩士論文,2007。
趙洪義,綠色高性能生態水泥的生產工藝,化學工業出版社,北京市,2007。
謝俊明、石東生、黃瑎雄、蔡豐遠、洪銘琪,添加硫酸亞鐵降低國產水泥六價鉻含量研究,勞工安全衛生研究季刊,1999。