簡易檢索 / 詳目顯示

研究生: 林欣妤
Lin, Xin-Yu
論文名稱: 建立氣象型乾旱遷移模型分析臺灣濁水溪沖積扇乾旱時空路徑
Establishing a Meteorological Drought Migration Model to Analyze the Spatiotemporal Paths of Drought in Choushui River Alluvial Fan, Taiwan
指導教授: 葉信富
Yeh, Hsin-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 111
中文關鍵詞: 標準化降水指數二維 copula 函數乾旱遷移模型乾旱時空路徑濁水溪沖積扇
外文關鍵詞: Standardized Precipitation Index, two-dimensional copula function, drought migration model, drought spatiotemporal path, Choushui River alluvial fan
相關次數: 點閱:101下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於氣候變遷造成降雨模式改變,導致乾旱現象愈來愈嚴重。乾旱的時空特性與其發展過程及驅動力息息相關,瞭解乾旱的演變和物理驅動因素對於水資源管理與預測工作有重大意義。本研究利用標準化降水指數評估濁水溪沖積扇乾旱事件之時間與空間特徵,透過二維copula函數,本研究建立了乾旱持續時間和極端乾旱覆蓋率的聯合機率分佈。這種方法能夠識別重大乾旱事件並估計其聯合重現期,與單一特徵方法相比,提供了更現實的視角。最後,本研究透過乾旱遷移模型分析主要乾旱事件之空間分佈、時空路徑及變化程度。研究結果顯示,1960年至2021年濁水溪沖積扇乾旱覆蓋率大於10%的乾旱事件有54件,延時多為6個月,且多數極端乾旱發生在12月。此外,乾旱事件在1981年之後往南移動的機率增加,且乾旱頻率的空間分佈在1981前後有明顯差異。乾旱遷移模型的結果顯示,透過二維copula函數選定的七個主要乾旱事件在初期和末期時路徑較長且移動速度更快,中期路徑較短且多集中於濁水溪沖積扇中部。乾旱路徑在1981年前移動路徑各不相同,月乾旱質心分佈較分散。1981年後則皆為由北到南移動,且月乾旱質心在濁水溪沖積扇內皆集中在北—南向分佈,分散程度小,方向性明顯,其主要原因為春季(2月到4月)時濁水溪沖積扇北部降雨量多於南部,使乾旱質心持續向南移動造成。這些研究結果可以進一步了解濁水溪沖積扇乾旱的動態過程,並作為未來水資源管理的參考。

    In recent years, the changing rainfall patterns resulting from climate change have led to an increasingly severe occurrence of drought. The spatiotemporal characteristics of drought are closely linked to its development process and driving forces. Understanding the evolution of drought and the physical driving factors holds significant importance for water resource management and forecasting efforts. This study employs the Standardized Precipitation Index to assess the temporal and spatial characteristics of drought events in the Choushui River alluvial fan. Through a two-dimensional copula function, this study establishes a joint probability distribution for drought duration and extreme drought coverage. This approach enables the identification of major drought events and the estimation of their joint return periods, providing a more realistic perspective compared to single-characteristic approaches. Finally, this study analyzes the spatial distribution, spatiotemporal paths, and variations of major drought events by establishing a drought migration model. The results indicate that from 1960 to 2021, there were 54 drought events with a coverage exceeding 10% in the Choushui River alluvial fan, with a duration mostly lasting for 6 months, and the majority of extreme droughts occurred in December. Furthermore, the probability of drought events moving southward increased after 1981, with a noticeable difference in the spatial distribution of drought frequency before and after 1981. The results of the drought migration model show that the seven major drought events selected through the two-dimensional copula function had longer path length and higher migration velocity in the early and late stages. In the mid-term of a drought event, paths were shorter, and the distribution was more concentrated around the centroid of the Choushui River alluvial fan. Before 1981, drought paths were diverse, with monthly drought centroids exhibiting a more scattered distribution. After 1981, all paths follow a trajectory from north to south, and the monthly drought centroids were concentrated in a north-south direction of the Choushui River alluvial fan, with a small dispersion and clear directionality. This is primarily attributed to the higher rainfall in the northern region of the Choushui River alluvial fan from February to April, leading to a consistent southward movement of drought centroids. These findings provide further insight into the dynamic process of drought in the Choushui River alluvial fan and serve as valuable references for future water resource management.

    Abstract I 摘 要 III Acknowledgement IV Table of Contents V List of Tables VII List of Figures VIII Chapter 1 Introduction 1 1.1 Motivation and Purpose 1 1.2 Literature Review 5 Chapter 2 Study Area and Data 12 Chapter 3 Methodology 15 3.1 Drought Identification 17 3.1.1 Standardized Precipitation Index (SPI) 17 3.1.2 Drought coverage (Dc) 19 3.2 Selection of Major Drought Events 22 3.2.1 Drought Variables 23 3.2.2 Fitting the Distribution Function of Drought Variables 24 3.2.3 Copula Functions and Joint Probability Distribution 26 3.3 Joint Return Period of Drought Events 29 3.4 Spatiotemporal Paths of Drought Events 31 3.5 Spatial Distribution of Drought 34 3.6 Standard Deviational Ellipse (SDE) 34 3.7 Wavelet Analysis between Drought and Large-Scale Climate Indices 38 Chapter 4 Results and Discussion 42 4.1 Characteristics of Drought Coverage and Duration 42 4.2 Direction of Drought Events 47 4.3 Spatial Distribution of Drought Frequency in Different Periods 51 4.4 Marginal Distribution of Drought Variables 54 4.5 Major Drought Events and Joint Probability Distribution 56 4.6 Joint Return Periods 59 4.7 Spatial Development Process of Major Drought Events 63 4.8 Spatial Migration Process of Major Drought Events 66 4.9 Standard Deviation Ellipses of Major Drought Events 71 4.10 Links between Rainfall Patterns and Drought Paths 73 4.11 Spatial Distribution of Drought Frequency in Different Seasons 82 4.12 Links between Climate Indices and Drought 85 Chapter 5 Conclusion and Suggestion 88 5.1 Conclusion 88 5.2 Suggestion 90 Reference 92 RESUME 100

    Adamowski, J., & Prokoph, A. (2014). Determining the amplitude and timing of streamflow discontinuities: A cross wavelet analysis approach. Hydrological Processes, 28(5), 2782-2793. https://doi.org/https://doi.org/10.1002/hyp.9843
    Allen, R., Pereira, L., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome., 300(9).
    Ashraf, M., & Routray, J. K. (2015). Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Natural Hazards, 77(1), 229-254. https://doi.org/https://doi.org/10.1007/s11069-015-1593-1
    Balakrishna, N., & Lai, C. D. (2009). Bivariate Copulas. Continuous Bivariate Distributions: Second Edition, 33-65.
    Beguería, S., Vicente-Serrano, S. M., & Fergus Reig, B. L. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International journal of climatology, 34(10), 3001-3023. https://doi.org/https://doi.org/10.1002/joc.3887
    Brechmann, E. C., & Schepsmeier, U. (2013). Modeling Dependence with C- and D-Vine Copulas: The R Package CDVine. Journal of statistical software, 52, 1-27.
    Brunner, M. I. (2023). Floods and droughts: a multivariate perspective. Hydrology and Earth System Sciences, 27(13). https://doi.org/https://doi.org/10.5194/hess-27-2479-2023
    Chan, S.-S., & Wu, J.-H. (2022). Municipal-to-Industrial Water Reuse via Multi-Stage and Multi-Pass Reverse Osmosis Systems: A Step from Water Scarcity towards Sustainable Development. Water, 14(3), 362. https://doi.org/https://doi.org/10.3390/w14030362
    Chen, S.-T., Kuo, C.-C., & Yu, P.-S. (2009). Historical trends and variability of meteorological droughts in Taiwan / Tendances historiques et variabilité des sécheresses météorologiques à Taiwan. Hydrological Sciences Journal, 54(3), 430-441. https://doi.org/10.1623/hysj.54.3.430
    Chen, Y.-L., & Huang, M.-C. (2022). Water usage reduction and CSR committees: Taiwan evidence. Corporate Social Responsibility and Environmental Management, 30(3), 1070-1081. https://doi.org/https://doi.org/10.1002/csr.2404
    Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.
    Dai, M., Huang, S., Huang, Q., Leng, G., Guo, Y., Wang, L., Fang, W., Li, P., & Zheng, X. (2020). Assessing agricultural drought risk and its dynamic evolution characteristics. Agricultural Water Management, 231, 106003. https://doi.org/10.1016/j.agwat.2020.106003
    Damberg, L., & AghaKouchak, A. (2014). Global trends and patterns of drought from space. Theoretical and Applied Climatology, 117(3), pages441–448.
    Diaz, V., Perez, G. A. C., Lanen, H. A. J. V., Solomatine, D., & Varouchakis, E. A. (2020). Characterisation of the dynamics of past droughts. Science of the Total Environment, 718, 134588. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.134588
    Fengying, W. (1999). Modern climate statistic diagnosis and prediction technology. Beijing: China.
    Frank, M. J. (1979). On the simultaneous associativity of F(x, y) and x+y−F(x, y). aequationes mathematicae, 19, 194–226.
    Friedman, M. (1976). On the analysis and solution of certain geographical optimal covering problems. Computers & Operations Research, 3(4), 283-294. https://doi.org/https://doi.org/10.1016/0305-0548(76)90011-3
    Fu, Y., Shen, X., Li, W., Wu, X., & Zhang, Q. (2022). Spatial and temporal evolution characteristics of meteorological drought in the Northwest of Yellow River Basin and its response to large-scale climatic factors. Journal of Water and Climate Change, 13(12), 4283–4301.
    Genest, C., & Favre, A.-C. (2007). Everything You Always Wanted to Know about Copula Modeling but Were Afraid to Ask. Journal of Hydrologic Engineering, 12(4), 347-367. https://doi.org/https://doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)
    Genest, C., Rémillard, B., & Beaudoin, D. (2009). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics, 44(2), 199-213. https://doi.org/https://doi.org/10.1016/j.insmatheco.2007.10.005
    Goel, N. K., Seth, S. M., & Chandra, S. (1998). Multivariate Modeling of Flood Flows. Journal of Hydraulic Engineering, 124(2). https://doi.org/https://doi.org/10.1061/(ASCE)0733-9429(1998)124:2(146)
    Goffe, W. L., Ferrier, G. D., & Rogers, J. (1994). Global optimization of statistical functions with simulated annealing. Journal of Econometrics, 60(1-2), 65-99. https://doi.org/https://doi.org/10.1016/0304-4076(94)90038-8
    Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear processes in geophysics, 11(5/6), 561-566. https://doi.org/https://doi.org/10.5194/npg-11-561-2004
    Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publ Inst Statist Univ Paris 9.
    Guo, H., Bao, A., Ndayisaba, F., Liu, T., Jiapaer, G., El-Tantawi, A. M., & Maeyer, P. D. (2018). Space-time characterization of drought events and their impacts on vegetation in Central Asia. Journal of Hydrology, 564, 1165-1178.
    Guo, Y., Zhang, J., Li, K., Aru, H., Feng, Z., Liu, X., & Tong, Z. (2023). Quantifying hazard of drought and heat compound extreme events during maize (Zea mays L.) growing season using Magnitude Index and Copula. Weather and Climate Extremes, 40, 100566. https://doi.org/https://doi.org/10.1016/j.wace.2023.100566
    Han, Z., Huang, Q., Huang, S., Leng, G., Bai, Q., Liang, H., Wang, L., Zhao, J., & Fang, W. (2021). Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors. Agricultural Water Management, 244, 106540. https://doi.org/https://doi.org/10.1016/j.agwat.2020.106540
    Hao, Z., Yuan, X., Xia, Y., Hao, F., & Singh, V. P. (2017). An Overview of Drought Monitoring and Prediction Systems at Regional and Global Scales. Bulletin of the American Meteorological Society, 98(9), 1879–1896. https://doi.org/https://doi.org/10.1175/BAMS-D-15-00149.1
    Hau, N.-X., Sano, M., Nakatsuka, T., Chen, S.-H., & Chen, I.-C. (2022). The modulation of Pacific Decadal Oscillation on ENSO-East Asian summer monsoon relationship over the past half-millennium. Science of the Total Environment, 857, 159437. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.159437
    He, L., Xu, L., Lu, H., Feng, W., & Shi, R. (2021). Characteristics of nitrogen balance transformation in farmland of Yangtze River Economic Belt from 1990 to 2018. China Environ. Sci., 41(10), 4820–4828. https://doi.org/https://doi.org/10.19674/j.cnki.issn1000-6923.20210511.002
    Herrera-Estrada, J. E., Satoh, Y., & Sheffield, J. (2017). Spatiotemporal dynamics of global drought. Geophysical Research Letters, 44(5), 2254-2263. https://doi.org/https://doi.org/10.1002/2016GL071768
    Huang, Y.-H., Lai, Y.-J., & Wu, J.-H. (2022). A System Dynamics Approach to Modeling Groundwater Dynamics: Case Study of the Choshui River Basin. Sustainability, 14(3), 1371. https://doi.org/https://doi.org/10.3390/su14031371
    Hudgins, L., Friehe, C. A., & Mayer, M. E. (1993). Wavelet transforms and atmopsheric turbulence. Physical Review Letters, 71(20), 3279. https://doi.org/https://doi.org/10.1103/PhysRevLett.71.3279
    Hung, C.-w., Hsu, H.-H., & Lu, M.-M. (2004). Decadal oscillation of spring rain in northern Taiwan. Geophysical Research Letters, 31(22). https://doi.org/ https://doi.org/10.1029/2004GL021344
    IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Technical Summary.
    Ji, Y., Li, Y., Yao, N., Biswas, A., Zou, Y., Meng, Q., & Liu, F. (2021). The lagged effect and impact of soil moisture drought on terrestrial ecosystem water use efficiency. Ecological Indicators, 133, 108349. https://doi.org/https://doi.org/10.1016/j.ecolind.2021.108349
    Jiang, Z., Chen, G. T.-J., & Wu, M.-C. (2003). Large-Scale Circulation Patterns Associated with Heavy Spring Rain Events over Taiwan in Strong ENSO and Non-ENSO Years. Monthly Weather Review, 131(8), 1769-1782. https://doi.org/https://doi.org/10.1175//2561.1
    Johnston, K., Hoef, J. V., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst.
    Kao, S.-C., & Govindaraju, R. S. (2010). A copula-based joint deficit index for droughts. Journal of Hydrology, 380(1–2), 121-134. https://doi.org/https://doi.org/10.1016/j.jhydrol.2009.10.029
    Kim, S., Shao, W., & Kam, J. (2019). Spatiotemporal patterns of US drought awareness. Palgrave Communications, 5(1), 1-9.
    Kummu, M., Guillaume, J. H. A., Moel, H. d., Eisner, S., Flörke, M., Porkka, M., Siebert, S., Veldkamp, T. I. E., & Ward, P. J. (2016). The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability. Scientific reports, 6(1), 38495.
    Laimighofer, J., & Laaha, G. (2022). How standard are standardized drought indices? Uncertainty components for the SPI & SPEI case. Journal of Hydrology, 613, 128385.
    Le, H. M., Corzo, G., Medina, V., Diaz, V., Nguyen, B. L., & Solomatine, D. P. (2019). A Comparison of Spatial–Temporal Scale Between Multiscalar Drought Indices in the South Central Region of Vietnam. Spatiotemporal Analysis of Extreme Hydrological Events., 143-169. https://doi.org/https://doi.org/10.1016/B978-0-12-811689-0.00007-0
    Lefever, D. W. (1926). Measuring Geographic Concentration by Means of the Standard Deviational Ellipse. American journal of sociology, 32(1), 88-94.
    Li, L., She, D., Zheng, H., Lin, P., & Yang, Z.-L. (2020a). Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China. Journal of Hydrometeorology, 21(7), 1513–1530. https://doi.org/https://doi.org/10.1175/JHM-D-19-0290.1
    Li, Z., Shao, Q., Tian, Q., & Zhang, L. (2020b). Copula-based drought severity-area-frequency curve and its uncertainty, a case study of Heihe River basin, China. Hydrology Research, 51(5), 867–881. https://doi.org/https://doi.org/10.2166/nh.2020.173
    Liu, X., Ma, Q., Yu, H., Li, Y., Li, L., Qi, M., Wu, W., Zhang, F., Wang, Y., Zhou, G., & Xu, Z. (2021). Climate warming-induced drought constrains vegetation productivity by weakening the temporal stability of the plant community in an arid grassland ecosystem. Agricultural and Forest Meteorology, 307, 108526. https://doi.org/https://doi.org/10.1016/j.agrformet.2021.108526
    Lloyd-Hughes, B., & Saunders, M. A. (2002). A drought climatology for Europe. International Journal of Climatology: A Journal of the Royal Meteorological Society, 22(13), 1571-1592. https://doi.org/ https://doi.org/10.1002/joc.846
    Mantua, N. J. (1999). The Pacific Decadal Oscillation. A brief overview for non-specialists. Encyclopedia of Environmental Change.
    McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Eighth Conference on Applied Climatology, 17, 179-183.
    Mehdipour, S., Nakhaee, N., Zolala, F., Okhovati, M., Foroud, A., & Haghdoost, A. A. (2022). A systematized review exploring the map of publications on the health impacts of drought. Natural Hazards 113, 35–62.
    Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(1-2), 202-216. https://doi.org/https://doi.org/10.1016/j.jhydrol.2010.07.012
    Mishra, A. K., & Singh, V. P. (2011). Drought modeling – A review. Journal of Hydrology, 403(1-2), 157-175. https://doi.org/https://doi.org/10.1016/j.jhydrol.2011.03.049
    Naz, F., Dars, G. H., Ansari, K., Jamro, S., & Krakauer, N. Y. (2020). Drought Trends in Balochistan. Water, 12(2), 470. https://doi.org/https://doi.org/10.3390/w12020470
    Nelsen, R. B. (2006). An introduction to copulas. Springer.
    Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau.
    Pandey, V., Pandey, P. K., & Lalrammawii, H. P. (2023). Characterization and return period analysis of meteorological drought under the humid subtropical climate of Manipur, northeast India. Natural Hazards Research. https://doi.org/https://doi.org/10.1016/j.nhres.2023.07.007
    Pokhrel, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., Gädeke, A., Gerten, D., Gosling, S. N., Grillakis, M., Gudmundsson, L., Hanasaki, N., Kim, H., Koutroulis, A., Liu, J., Papadimitriou, L., Schewe, J., Schmied, H. M., Stacke, T., Telteu, C.-E., . . . Wada, Y. (2021). Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11(3), 226–233.
    Qing, Y., Wang, S., Yang, Z.-L., & Gentine, P. (2023). Soil moisture−atmosphere feedbacks have triggered the shifts from drought to pluvial conditions since 1980. Communications Earth & Environment, 4(1), 254. https://doi.org/https://doi.org/10.1038/s43247-023-00922-2
    Rioul, O., & Vetterli, M. (1991). Wavelets and signal processing. IEEE Signal Processing Magazine, 8(4), 14 - 38. https://doi.org/10.1109/79.91217
    Shiau, J.-T., & Shen, H. W. (2001). Recurrence Analysis of Hydrologic Droughts of Differing Severity. Journal of water resources planning and management, 127(1), 30-40. https://doi.org/https://doi.org/10.1061/(ASCE)0733-9496(2001)127:1(30)
    Shiau, J. T. (2003). Return period of bivariate distributed extreme hydrological events. Stochastic Environmental Research and Risk Assessment, 17, 42-57. https://doi.org/https://doi.org/10.1007/s00477-003-0125-9
    Shiau, J. T. (2006). Fitting Drought Duration and Severity with Two-Dimensional Copulas. Water Resources Management, 20, 795-815.
    Singh, K., & Singh, V. P. (1991). Derivation of bivariate probability density functions with exponential marginals. Stochastic Hydrology and Hydraulics, 5(1), 55-68.
    Sklar, A. (1973). Random variables, joint distribution functions, and copulas. Kybernetika, 9(6), 449-460.
    Smith, A. B., & Matthews, J. L. (2015). Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Natural Hazards, 77, 1829–1851.
    Torrence, C., & Compo, G. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61-78. https://doi.org/https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    Tsai, S., Lee, S., Zou, Z., & Chu, T. (2022). The Competitions, Negotiations, and Collaborations of Regional Integration: A Perspective on Sustainable Management of Water Resources in Pingtung Plain, Taiwan. Sustainability, 14(5), 3040. https://doi.org/https://doi.org/10.3390/su14053040
    Tsakiris, G., Kordalis, N., Tigkas, D., Tsakiris, V., & Vangelis, H. (2016). Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas. Water Resources Management, 30, 5723–5735.
    UNEP. (2022). UNEP Emissions Gap Report.
    Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate, 23(7), 1696–1718. https://doi.org/https://doi.org/10.1175/2009JCLI2909.1
    Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S., & Domínguez-Castro, F. (2020). A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 201, 102953. https://doi.org/https://doi.org/10.1016/j.earscirev.2019.102953
    Wang, B., Shi, W., & Miao, Z. (2015). Confidence Analysis of Standard Deviational Ellipse and Its Extension into Higher Dimensional Euclidean Space. PloS one,, 10(3), e0118537. https://doi.org/https://doi.org/10.1371/journal.pone.0118537
    Wang, F., Lai, H., Li, Y., Feng, K., Zhang, Z., Tian, Q., Zhu, X., & Yang, H. (2022). Identifying the status of groundwater drought from a GRACE mascon model perspective across China during 2003–2018. Agricultural Water Management, 260, 107251. https://doi.org/https://doi.org/10.1016/j.agwat.2021.107251
    Wang, Y.-L. (2016). Characterizing subsurface hydraulic characteristics at Zhuoshui River alluvial fan, Taiwan. The University of Arizona ProQuest Dissertations Publishing.
    Wang, Y. H., Fan, C. W., Lou, J. R., & Chien, C. T. C. (2021). Analyzing Public Cognition and Attitudes toward Water Infrastructure in Taiwan. IOP Conference Series: Earth and Environmental Science, 690, 012041.
    Wells, N., Goddard, S., & Hayes, M. J. (2004). A Self-Calibrating Palmer Drought Severity Index. Journal of Climate, 17(12), 2335-2351. https://doi.org/https://doi.org/10.1175/1520-0442(2004)017<2335:ASPDSI>2.0.CO;2
    Weng, S.-P. (2016). Constructing a 1-km Gridded Multi-Scalar Drought Index Dataset (1960 - 2012) in Taiwan Based on the Standardized Precipitation Evapotranspiration Index-SPEI. Terrestrial, Atmospheric & Oceanic Sciences, 27(5), 625-648. https://doi.org/doi:10.3319/TAO.2016.06.13.02
    Wilhite, D., & Glantz, M. (1985). Understanding: The drought phenomenon: The role of definitions. . Water International 10(3), 111-120.
    Wood, E. F., Schubert, S. D., Wood, A. W., Peters-Lidard, C. D., Mo, K. C., Mariotti, A., & Pulwarty, R. S. (2015). Prospects for Advancing Drought Understanding, Monitoring, and Prediction. Journal of Hydrometeorology, 16(4), 1636–1657.
    Xu, K., Yang, D., Yang, H., Li, Z., Qin, Y., & Shen, Y. (2015). Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. Journal of Hydrology, 526, 253-264. https://doi.org/https://doi.org/10.1016/j.jhydrol.2014.09.047
    Ye, X., & Wu, Z. (2018). Contrasting Impacts of ENSO on the Interannual Variations of Summer Runoff between the Upper and Mid-Lower Reaches of the Yangtze River. Atmosphere, 9(12), 478. https://doi.org/https://doi.org/10.3390/atmos9120478
    Yeh, H.-F. (2019). Using integrated meteorological and hydrological indices to assess drought characteristics in southern Taiwan. Hydrology Research, 50(3), 901-914. https://doi.org/https://doi.org/10.2166/nh.2019.120
    Yeh, H.-F. (2021). Spatiotemporal Variation of the Meteorological and Groundwater Droughts in Central Taiwan. Frontiers in Water, 3, 636792. https://doi.org/https://doi.org/10.3389/frwa.2021.636792
    Yeh, H.-F., & Chang, C.-F. (2019). Using Standardized Groundwater Index and Standardized Precipitation Index to Assess Drought Characteristics of the Kaoping River Basin, Taiwan. Water Resources, 46(5), 670-678.
    Yeh, H.-F., & Hsu, H.-L. (2019a). Stochastic Model for Drought Forecasting in the Southern Taiwan Basin. Water, 11(10), 2041. https://doi.org/https://doi.org/10.3390/w11102041
    Yeh, H.-F., & Hsu, H.-L. (2019b). Using the Markov Chain to Analyze Precipitation and Groundwater Drought Characteristics and Linkage with Atmospheric Circulation. Sustainability, 11(6), 1817. https://doi.org/https://doi.org/10.3390/su11061817
    Yu, T., Peng, W., & YS Cheng, P. W. (2020). Discharging Compacted Sediment by Underwater Blasting in Conjunction with a Desilting Tunnel in the Tseng-Wen Reservoir of Taiwan. Journal of Performance of Constructed Facilities, 34(3). https://doi.org/https://doi.org/10.1061/(ASCE)CF.1943-5509.000143
    Yue, S. (1999). Applying bivariate normal distribution to flood frequency analysis. Water International, 24(3), 248-254.
    Yue, S., Ouarda, T. B. M. J., & Bobée, B. (2001). A review of bivariate gamma distributions for hydrological application. Journal of Hydrology, 246(1-4), 1-18. https://doi.org/https://doi.org/10.1016/S0022-1694(01)00374-2
    Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P., & Bruneau, P. (1999). The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226(1-2), 88-100. https://doi.org/https://doi.org/10.1016/S0022-1694(99)00168-7
    Zabin, C. J., Jurgens, L. J., Bible, J. M., Patten, M. V., Chang, A. L., Grosholz, E. D., & Boyer, K. E. (2022). Increasing the resilience of ecological restoration to extreme climatic events. Frontiers in Ecology and the Environment, 20(5), 310-318. https://doi.org/https://doi.org/10.1002/fee.2471
    Zhao, L., & Zhao, Z. (2014). Spatial differentiation of China’s economic space based on characteristic ellipse. Scientia Geographica Sinica, 34(08), 979-986. https://doi.org/https://doi.org/10.13249/j.cnki.sgs.2014.08.015
    Zhou, H., Liu, Y., & Liu, Y. (2019). An Approach to Tracking Meteorological Drought Migration. Water Resources Reserch, 55(4), 3266-3284.

    下載圖示 校內:2025-01-31公開
    校外:2025-01-31公開
    QR CODE