簡易檢索 / 詳目顯示

研究生: 張文馨
Chang, Wen-Hsin
論文名稱: 利用超臨界流體萃取技術製備去細胞眼角膜支架
Construction of acellular corneal scaffolds by supercritical fluid extraction
指導教授: 葉明龍
Yeh, Ming-Long
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 57
中文關鍵詞: 去細胞超臨界流體萃取去細胞豬眼角膜支架
外文關鍵詞: decellularization, supercritical fluid extraction, acellular porcine corneal scaffold
相關次數: 點閱:113下載:32
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當眼角膜遭受較嚴重的創傷、感染或是發炎反應,會造成無法復原的傷疤,最終失去視覺。臨床上,主要是以角膜移植的方式來恢復視力,但全世界有很多人因為捐贈角膜的不足而仍舊失明,這樣的病患在發展中國家尤其常見。人工角膜嘗試以合成高分子作為支架,但缺乏天然組織的結構及細胞貼附增生的特性,直接異種角膜移植又有排斥的問題,因此本研究以結構一致的豬眼角膜作為支架材料,去除細胞以免除排斥的現象。將動物組織裡的細胞與免疫原清除,傳統上常用清潔劑來洗去細胞組成物,若清潔劑殘留在植體內的話,很可能會對周圍健康的組織造成傷害;而物理性的二氧化碳超臨界流體具有良好的轉換率和滲透性,不會有藥劑殘留的疑慮。本研究將使用二氧化碳超臨界流體萃取技術來清除組織內的細胞成分,分析其結構與成分及體外細胞培養。希望可以製成一個具有天然結構的眼角膜支架。
    在製程上,首先藉由滲透壓刺激,以高張與低張溶液讓細胞裂解,接著,剩餘的細胞或是細胞碎屑則以超臨界流體帶出,另外以常用的化學去細胞液Triton來洗淨作為對照組。
    眼角膜經不同的去細胞製程,其含水量皆增加,再經甘油脫水後,兩種去細胞支架皆回復透明度。從組織染色分析、DNA含量和蛋白質電泳分析可以發現,兩種去細胞製程,細胞組成物皆明顯減少。由於GAG含量減少以及基質內的孔洞變大、變多,使得去細胞支架的機械強度降低。雖然比不上正常的眼角膜,但超臨界處理的眼角膜薄片仍有足夠的強度來承受臨床手術移植,而不被縫線切割。在體外試驗上,小鼠纖維母細胞能夠貼附在超臨界或Triton處理後的支架上,並隨著時間推移而增加。除此之外,兔子眼角膜細胞也能在超臨界處理的眼角膜上貼附、爬行和增生,顯示此技術所製成的去細胞支架具有良好的生物相容性。
    總體而言,以超臨界流體萃取技術所製成的去細胞豬眼角膜支架具有良好的生物相容性,非常適合用於眼角膜組織工程,也能應用於眼角膜創傷等的治療上。

    Serious trauma, infectious and inflammatory eye diseases cause scarring of the cornea, ultimately resulting functional vision loss. Clinically, the main method to recover eyesight is corneal transplantation. The lack of corneal donors make people worldwide suffer from blindness particularly in developing countries. Artificial cornea scaffolds made by synthesized polymers do not mimic the native structure and lack the surface properties for cell adhesion and migration. Xenograft transplantation such as porcine cornea is limited use for its risk of rejection; however, decellularized cornea can provide the scaffold with the best structure and properties for artificial cornea. In order to remove heterogeneous cells that could cause immune reaction, chemical detergents are used to wash out cell debris traditionally. However, those detergents may remain in grafts that are harmful to hosts. Supercritical fluid, physical decellularization, has high transfer rate and permeability to remove cells without the risk of chemicals remaining in the tissue. This study examined the properties of supercritical carbon dioxide (SCCO2) treated cornea and Triton-treated cornea by histology, biochemical composition, tensile test and in vitro examinations.
    Porcine corneas were decellularized with a combination of treatments. Hypo- and hypertonic solutions were first used to lyse cells by osmotic shock. Residual cells and cell debris were then washed out by SCCO2. Traditional chemical decellularized method Triton X-100 was also used to serve as control.
    The water contents of both SCCO2-treated and Triton-treated corneas were higher than native cornea and they restored transparency after dehydration in glycerol. Histology, DNA quantification and western blot showed decreased cellular components in both SCCO2-treated and Triton-treated corneas. Corneal scaffolds with both treatments had lower moduli and maximum load, resulting from decreased GAG content and enlarged pore size. Although the mechanical strength was incomparable with native cornea, SCCO2-treated corneal slices could withstand clinical suture without cut through. In vitro test, mouse embryo fibroblasts did attach to the scaffolds and proliferate as the time went on. However, cells would not survive if Triton wasn’t cleaned completely. Moreover, rabbit corneal cells could adhere, migrate and proliferate on SCCO2-treated corneas, indicating the scaffolds possessed good biocompatibility.
    In summary, acellular porcine cornea prepared using SCCO2 extraction is a highly suitable scaffold for corneal tissue engineering and other applications such as treatment of corneal ulcers.

    中文摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures IX Chapter 1: Introduction 1 1.1 Biology and composition of cornea 1 1.2 Corneal diseases and injuries 6 1.3 Corneal transplantation 7 1.4 Corneal implants 9 1.5 Supercritical fluid 13 1.6 Motivation and aims 13 Chapter 2: Materials and Methods 15 2.1 Experiment flow chart 15 2.2 Instruments 15 2.3 Materials 16 2.4 Fabrication of corneal scaffolds 18 2.5 Characterization of corneal scaffolds 18 2.5.1 Macroscopic evaluation 18 2.5.2 Water content and swelling rate 19 2.5.3 Mechanical test 19 2.5.4 Scanning electron microscope (SEM) and pore size analysis 20 2.5.5 Histology 20 2.5.6 DNA quantification and DNA electrophoresis 21 2.5.7 SDS-PAGE and western blot 21 2.5.8 Glycosaminoglycan quantification 22 2.6 Isolation and culture of rabbit corneal cells 22 2.7 In vitro analysis of corneal scaffolds 23 2.7.1 Cell attachment and proliferation assay 23 2.7.2 Repopulation of acellular porcine corneas 24 2.7.3 Histology and immunohistochemistry 24 2.8 Statistical analysis 25 Chapter 3: Results 26 3.1 Characterization of SCCO2- and Triton-treated corneal scaffolds 26 3.1.1 Macroscopic evaluation 26 3.1.2 Water content and swelling rate 26 3.1.3 Mechanical test 27 3.1.4 SEM and pore size analysis 29 3.1.5 Histology 30 3.1.6 DNA quantification and DNA electrophoresis 30 3.1.7 SDS-PAGE and western blot 32 3.1.8 Glycosaminoglycan quantification 33 3.2 In vitro analysis of SCCO2- and Triton-treated corneal scaffolds 34 3.2.1 Cell attachment and proliferation assay 34 3.2.2 Isolation and culture of rabbit corneal cells 35 3.2.3 Histology and IHC of repopulated corneal scaffolds 36 Chapter 4: Discussion 37 Chapter 5: Conclusion 45 Chapter 6: Limitations and Future works 46 References 47

    [1] L. Kolozsvari, A. Nogradi, B. Hopp, Z. Bor, UV absorbance of the human cornea in the 240- to 400-nm range, Invest Ophthalmol Vis Sci 43(7) (2002) 2165-2168.
    [2] S.S. Kjesbu, K. Moksnes, P. Klepstad, H. Knobel, S. Kaasa, O. Dale, Application of pupillometry and pupillary reactions in medical research, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke 125(1) (2005) 29-32.
    [3] L.A. Levin, F.H. Adler, Adler's physiology of the eye, 11th ed., Saunders/Elsevier, Edingburg, 2011.
    [4] M.J. Hogan, J.A. Alvarado, J.E. Weddell, Histology of the human eye; an atlas and textbook, Saunders, Philadelphia, Pennsylvania, 1971.
    [5] S.L. Wilson, L.E. Sidney, S.E. Dunphy, J.B. Rose, A. Hopkinson, Keeping an eye on decellularized corneas: a review of methods, characterization and applications, J Funct Biomater 4(3) (2013) 114-161.
    [6] S.D. Klyce, C.E. Crosson, Transport processes across the rabbit corneal epithelium: a review, Curr Eye Res 4(4) (1985) 323-331.
    [7] B.J. McLaughlin, R.B. Caldwell, Y. Sasaki, T.O. Wood, Freeze-fracture quantitative comparison of rabbit corneal epithelial and endothelial membranes, Curr Eye Res 4(9) (1985) 951-961.
    [8] M. Boulton, J. Albon, Stem cells in the eye, Int J Biochem Cell Biol 36(4) (2004) 643-657.
    [9] R.M. Lavker, S.C. Tseng, T.T. Sun, Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle, Exp Eye Res 78(3) (2004) 433-446.
    [10] S.C. Tseng, Concept and application of limbal stem cells, Eye (Lond) 3 ( Pt 2) (1989) 141-157.
    [11] H.F. Edelhauser, The resiliency of the corneal endothelium to refractive and intraocular surgery, Cornea 19(3) (2000) 263-273.
    [12] W.J. Armitage, A.D. Dick, W.M. Bourne, Predicting endothelial cell loss and long-term corneal graft survival, Invest Ophthalmol Vis Sci 44(8) (2003) 3326-3331.
    [13] H.F. Edelhauser, The balance between corneal transparency and edema: the Proctor Lecture, Invest Ophthalmol Vis Sci 47(5) (2006) 1754-1767.
    [14] R.W. Yee, M. Matsuda, R.O. Schultz, H.F. Edelhauser, Changes in the normal corneal endothelial cellular pattern as a function of age, Curr Eye Res 4(6) (1985) 671-678.
    [15] D.R. Whikehart, C.H. Parikh, A.V. Vaughn, K. Mishler, H.F. Edelhauser, Evidence suggesting the existence of stem cells for the human corneal endothelium, Mol Vis 11 (2005) 816-824.
    [16] S.L. McGowan, H.F. Edelhauser, R.R. Pfister, D.R. Whikehart, Stem cell markers in the human posterior limbus and corneal endothelium of unwounded and wounded corneas, Mol Vis 13 (2007) 1984-2000.
    [17] S. Yunliang, H. Yuqiang, L. Ying-Peng, Z. Ming-Zhi, D.S. Lam, S.K. Rao, Corneal endothelial cell density and morphology in healthy Chinese eyes, Cornea 26(2) (2007) 130-132.
    [18] S.K. Rao, P. Ranjan Sen, R. Fogla, S. Gangadharan, P. Padmanabhan, S.S. Badrinath, Corneal endothelial cell density and morphology in normal Indian eyes, Cornea 19(6) (2000) 820-823.
    [19] M.D. Padilla, S.A. Sibayan, C.S. Gonzales, Corneal endothelial cell density and morphology in normal Filipino eyes, Cornea 23(2) (2004) 129-135.
    [20] M. Matsuda, R.W. Yee, H.F. Edelhauser, Comparison of the corneal endothelium in an American and a Japanese population, Arch Ophthalmol 103(1) (1985) 68-70.
    [21] H. Davson, The Eye, 3rd ed., Academic Press, Orlando, Florida, 1984.
    [22] A.J. Bron, R.C. Tripathi, B.J. Tripathi, E. Wolff, Wolff's anatomy of the eye and orbit, 8th ed., Chapman & Hall Medical, London ; New York, 1997.
    [23] J.E. Harris, Symposium on the cornea. Introduction: Factors influencing corneal hydration, Invest Ophthalmol 1(2) (1962) 151-157.
    [24] D.H. Geroski, M. Matsuda, R.W. Yee, H.F. Edelhauser, Pump function of the human corneal endothelium. Effects of age and cornea guttata, Ophthalmology 92(6) (1985) 759-763.
    [25] S. Mishima, Clinical investigations on the corneal endothelium-XXXVIII Edward Jackson Memorial Lecture, Am J Ophthalmol 93(1) (1982) 1-29.
    [26] R.L. Niederer, D. Perumal, T. Sherwin, C.N. McGhee, Age-related differences in the normal human cornea: a laser scanning in vivo confocal microscopy study, Br J Ophthalmol 91(9) (2007) 1165-1169.
    [27] S. Patel, J. McLaren, D. Hodge, W. Bourne, Normal human keratocyte density and corneal thickness measurement by using confocal microscopy in vivo, Invest Ophthalmol Vis Sci 42(2) (2001) 333-3339.
    [28] C. Hahnel, S. Somodi, D.G. Weiss, R.F. Guthoff, The keratocyte network of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy, Cornea 19(2) (2000) 185-193.
    [29] T. Ihanamaki, L.J. Pelliniemi, E. Vuorio, Collagens and collagen-related matrix components in the human and mouse eye, Prog Retin Eye Res 23(4) (2004) 403-434.
    [30] D.M. Albert, F.A. Jakobiec, Principles and practice of ophthalmology, 2nd ed., Saunders, Philadelphia, Pennsylvania, 2000.
    [31] F.H. Silver, Y.P. Kato, M. Ohno, A.J. Wasserman, Analysis of mammalian connective tissue: relationship between hierarchical structures and mechanical properties, J Long Term Eff Med Implants 2(2-3) (1992) 165-198.
    [32] Y.C. Fung, Biomechanics: mechanical properties of living tissues, Springer-Verlag, New York, 1981.
    [33] M. Hirsch, G. Prenant, G. Renard, Three-dimensional supramolecular organization of the extracellular matrix in human and rabbit corneal stroma, as revealed by ultrarapid-freezing and deep-etching methods, Exp Eye Res 72(2) (2001) 123-135.
    [34] D.G. Dawson, H.E. Grossniklaus, B.E. McCarey, H.F. Edelhauser, Biomechanical and wound healing characteristics of corneas after excimer laser keratorefractive surgery: is there a difference between advanced surface ablation and sub-Bowman's keratomileusis?, J Refract Surg 24(1) (2008) S90-S96.
    [35] Y. Komai, T. Ushiki, The three-dimensional organization of collagen fibrils in the human cornea and sclera, Invest Ophthalmol Vis Sci 32(8) (1991) 2244-2258.
    [36] E.E. Hedblom, The role of polysaccharides in corneal swelling, Exp Eye Res 1(1) (1961) 81-91.
    [37] C.A. Poole, N.H. Brookes, G.M. Clover, Keratocyte networks visualised in the living cornea using vital dyes, J Cell Sci 106 ( Pt 2) (1993) 685-691.
    [38] P. Hamrah, Y. Liu, Q. Zhang, M.R. Dana, The corneal stroma is endowed with a significant number of resident dendritic cells, Invest Ophthalmol Vis Sci 44(2) (2003) 581-589.
    [39] L.J. Muller, L. Pels, G.F. Vrensen, Novel aspects of the ultrastructural organization of human corneal keratocytes, Invest Ophthalmol Vis Sci 36(13) (1995) 2557-2567.
    [40] B. Schimmelpfennig, Nerve structures in human central corneal epithelium, Graefes Arch Clin Exp Ophthalmol 218(1) (1982) 14-20.
    [41] A.J. Rozsa, R.W. Beuerman, Density and organization of free nerve endings in the corneal epithelium of the rabbit, Pain 14(2) (1982) 105-120.
    [42] R.F. Guthoff, H. Wienss, C. Hahnel, A. Wree, Epithelial innervation of human cornea: a three-dimensional study using confocal laser scanning fluorescence microscopy, Cornea 24(5) (2005) 608-613.
    [43] L.J. Muller, C.F. Marfurt, F. Kruse, T.M. Tervo, Corneal nerves: structure, contents and function, Exp Eye Res 76(5) (2003) 521-542.
    [44] J.G. Lawrenson, Corneal sensitivity in health and disease, Ophthalmic Physiol Opt 17 (Suppl 1) (1997) S17-S22.
    [45] C. Belmonte, M.C. Acosta, J. Gallar, Neural basis of sensation in intact and injured corneas, Exp Eye Res 78(3) (2004) 513-525.
    [46] M. Romero-Jimenez, J. Santodomingo-Rubido, J.S. Wolffsohn, Keratoconus: a review, Cont Lens Anterior Eye 33(4) (2010) 157-166; quiz 205.
    [47] Y. Wang, Y.S. Rabinowitz, J.I. Rotter, H. Yang, Genetic epidemiological study of keratoconus: evidence for major gene determination, Am J Med Genet 93(5) (2000) 403-409.
    [48] M. Cristina Kenney, D.J. Brown, The cascade hypothesis of keratoconus, Cont Lens Anterior Eye 26(3) (2003) 139-146.
    [49] E.J. McGlumphy, W.S. Yeo, S.A. Riazuddin, A. Al-Saif, J. Wang, A.O. Eghrari, D.N. Meadows, D.G. Emmert, N. Katsanis, J.D. Gottsch, Age-severity relationships in families linked to FCD2 with retroillumination photography, Invest Ophthalmol Vis Sci 51(12) (2010) 6298-6302.
    [50] A.O. Eghrari, J.D. Gottsch, Fuchs' corneal dystrophy, Expert Rev Ophthalmol 5(2) (2010) 147-159.
    [51] G.K. Klintworth, Corneal dystrophies, Orphanet J Rare Dis 4 (2009) 7.
    [52] D.T. Tan, J.K. Dart, E.J. Holland, S. Kinoshita, Corneal transplantation, Lancet 379(9827) (2012) 1749-1761.
    [53] M. Anwar, K.D. Teichmann, Deep lamellar keratoplasty: surgical techniques for anterior lamellar keratoplasty with and without baring of Descemet's membrane, Cornea 21(4) (2002) 374-383.
    [54] W.J. Reinhart, D.C. Musch, D.S. Jacobs, W.B. Lee, S.C. Kaufman, R.M. Shtein, Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology, Ophthalmology 118(1) (2011) 209-218.
    [55] F.W. Price Jr., M.O. Price, Descemet's stripping with endothelial keratoplasty in 50 eyes: a refractive neutral corneal transplant, J Refract Surg 21(4) (2005) 339-345.
    [56] M.B. McCauley, F.W. Price Jr., M.O. Price, Descemet membrane automated endothelial keratoplasty: hybrid technique combining DSAEK stability with DMEK visual results, J Cataract Refract Surg 35(10) (2009) 1659-1664.
    [57] M.B. McCauley, M.O. Price, K.M. Fairchild, D.A. Price, F.W. Price Jr., Prospective study of visual outcomes and endothelial survival with Descemet membrane automated endothelial keratoplasty, Cornea 30(3) (2011) 315-319.
    [58] M.O. Price, M. Gorovoy, B.A. Benetz, F.W. Price Jr., H.J. Menegay, S.M. Debanne, J.H. Lass, Descemet's stripping automated endothelial keratoplasty outcomes compared with penetrating keratoplasty from the Cornea Donor Study, Ophthalmology 117(3) (2010) 438-444.
    [59] H. Hara, D.K. Cooper, Xenotransplantation--the future of corneal transplantation?, Cornea 30(4) (2011) 371-378.
    [60] S.L. Wilson, A.J. El Haj, Y. Yang, Control of scar tissue formation in the cornea: strategies in clinical and corneal tissue engineering, J Funct Biomater 3(3) (2012) 642-687.
    [61] R.E. Michler, Xenotransplantation: risks, clinical potential, and future prospects, Emerg Infect Dis 2(1) (1996) 64-70.
    [62] P. Zhiqiang, S. Cun, J. Ying, W. Ningli, W. Li, WZS-pig is a potential donor alternative in corneal xenotransplantation, Xenotransplantation 14(6) (2007) 603-611.
    [63] D.F. Larkin, K.A. Williams, The host response in experimental corneal xenotransplantation, Eye (Lond) 9 ( Pt 2) (1995) 254-260.
    [64] M. Ahearne, Y. Yang, K. Liu, Mechanical characterisation of hydrogels for tissue engineering applications, Topics in tissue Engineering 4(12) (2008) 1-16.
    [65] M. Rafat, F. Li, P. Fagerholm, N.S. Lagali, M.A. Watsky, R. Munger, T. Matsuura, M. Griffith, PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering, Biomaterials 29(29) (2008) 3960-3972.
    [66] L. Liu, L. Kuffova, M. Griffith, Z. Dang, E. Muckersie, Y. Liu, C.R. McLaughlin, J.V. Forrester, Immunological responses in mice to full-thickness corneal grafts engineered from porcine collagen, Biomaterials 28(26) (2007) 3807-3814.
    [67] P. Fagerholm, N.S. Lagali, J.A. Ong, K. Merrett, W.B. Jackson, J.W. Polarek, E.J. Suuronen, Y. Liu, I. Brunette, M. Griffith, Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold, Biomaterials 35(8) (2014) 2420-2427.
    [68] T.H. van Essen, L. van Zijl, T. Possemiers, A.A. Mulder, S.J. Zwart, C.H. Chou, C.C. Lin, H.J. Lai, G.P. Luyten, M.J. Tassignon, N. Zakaria, A. El Ghalbzouri, M.J. Jager, Biocompatibility of a fish scale-derived artificial cornea: Cytotoxicity, cellular adhesion and phenotype, and in vivo immunogenicity, Biomaterials 81 (2016) 36-45.
    [69] J.C. Roujeau, J.P. Kelly, L. Naldi, B. Rzany, R.S. Stern, T. Anderson, A. Auquier, S. Bastuji-Garin, O. Correia, F. Locati, et al., Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis, N Engl J Med 333(24) (1995) 1600-1607.
    [70] B. Salvador-Culla, P.E. Kolovou, Keratoprosthesis: A Review of Recent Advances in the Field, J Funct Biomater 7(2) (2016) 13.
    [71] M. Harissi-Dagher, B.F. Khan, D.A. Schaumberg, C.H. Dohlman, Importance of nutrition to corneal grafts when used as a carrier of the Boston Keratoprosthesis, Cornea 26(5) (2007) 564-568.
    [72] C. Liu, B. Paul, R. Tandon, E. Lee, K. Fong, I. Mavrikakis, J. Herold, S. Thorp, P. Brittain, I. Francis, C. Ferrett, C. Hull, A. Lloyd, D. Green, V. Franklin, B. Tighe, M. Fukuda, S. Hamada, The osteo-odonto-keratoprosthesis (OOKP), Semin Ophthalmol 20(2) (2005) 113-128.
    [73] R. Ricci, I. Pecorella, A. Ciardi, C. Della Rocca, U. Di Tondo, V. Marchi, Strampelli's osteo-odonto-keratoprosthesis. Clinical and histological long-term features of three prostheses, Br J Ophthalmol 76(4) (1992) 232-234.
    [74] B.L. Zerbe, M.W. Belin, J.B. Ciolino, G. Boston Type 1 Keratoprosthesis Study, Results from the multicenter Boston Type 1 Keratoprosthesis Study, Ophthalmology 113(10) (2006) 1779-1784 e1.
    [75] E.J. Orwin, A. Hubel, In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix, Tissue Eng 6(4) (2000) 307-319.
    [76] S.R. Sandeman, A.W. Lloyd, B.J. Tighe, V. Franklin, J. Li, F. Lydon, C.S. Liu, D.J. Mann, S.E. James, R. Martin, A model for the preliminary biological screening of potential keratoprosthetic biomaterials, Biomaterials 24(26) (2003) 4729-4739.
    [77] H.F. Chew, B.D. Ayres, K.M. Hammersmith, C.J. Rapuano, P.R. Laibson, J.S. Myers, Y.P. Jin, E.J. Cohen, Boston keratoprosthesis outcomes and complications, Cornea 28(9) (2009) 989-996.
    [78] T.V. Chirila, An overview of the development of artificial corneas with porous skirts and the use of PHEMA for such an application, Biomaterials 22(24) (2001) 3311-3317.
    [79] A. Cruzat, A. Shukla, C.H. Dohlman, K. Colby, Wound anatomy after type 1 Boston KPro using oversized back plates, Cornea 32(12) (2013) 1531-1536.
    [80] X.W. Tan, A.P. Perera, A. Tan, D. Tan, K.A. Khor, R.W. Beuerman, J.S. Mehta, Comparison of candidate materials for a synthetic osteo-odonto keratoprosthesis device, Invest Ophthalmol Vis Sci 52(1) (2011) 21-29.
    [81] V.S. Avadhanam, J. Herold, S. Thorp, C.S. Liu, Mitomycin-C for mucous membrane overgrowth in OOKP eyes, Cornea 33(9) (2014) 981-984.
    [82] L. Padrela, M.A. Rodrigues, S.P. Velaga, H.A. Matos, E.G. de Azevedo, Formation of indomethacin-saccharin cocrystals using supercritical fluid technology, Eur J Pharm Sci 38(1) (2009) 9-17.
    [83] K. Sawada, D. Terada, T. Yamaoka, S. Kitamura, T. Fujisato, Cell removal with supercritical carbon dioxide for acellular artificial tissue, J Chem Technol Biotechnol 83(6) (2008) 943-949.
    [84] C. Cinquemani, C. Boyle, E. Bach, E. Schollmeyer, Inactivation of microbes using compressed carbon dioxide—An environmentally sound disinfection process for medical fabrics, J Supercrit Fluids 42(3) (2007) 392-397.
    [85] E. Reverchon, I. De Marco, Supercritical fluid extraction and fractionation of natural matter, J Supercrit Fluids 38(2) (2006) 146-166.
    [86] J.R. Dean, S. Khundker, Extraction of pharmaceuticals using pressurised carbon dioxide, J Pharm Biomed Anal 15(7) (1997) 875-886.
    [87] J. Xiao, H. Duan, Z. Liu, Z. Wu, Y. Lan, W. Zhang, C. Li, F. Chen, Q. Zhou, X. Wang, J. Huang, Z. Wang, Construction of the recellularized corneal stroma using porous acellular corneal scaffold, Biomaterials 32(29) (2011) 6962-6971.
    [88] H.J. Choi, J.J. Lee, D.H. Kim, M.K. Kim, H.J. Lee, A.Y. Ko, H.J. Kang, C. Park, W.R. Wee, Blockade of CD40-CD154 costimulatory pathway promotes long-term survival of full-thickness porcine corneal grafts in nonhuman primates: clinically applicable xenocorneal transplantation, Am J Transplant 15(3) (2015) 628-641.
    [89] J.R. Thiagarajah, A.S. Verkman, Aquaporin deletion in mice reduces corneal water permeability and delays restoration of transparency after swelling, J Biol Chem 277(21) (2002) 19139-19144.
    [90] T.W. Gilbert, J.M. Freund, S.F. Badylak, Quantification of DNA in biologic scaffold materials, J Surg Res 152(1) (2009) 135-139.
    [91] T.W. Gilbert, T.L. Sellaro, S.F. Badylak, Decellularization of tissues and organs, Biomaterials 27(19) (2006) 3675-3683.
    [92] S.F. Badylak, Xenogeneic extracellular matrix as a scaffold for tissue reconstruction, Transpl Immunol 12(3-4) (2004) 367-377.
    [93] Y.C. Choi, J.S. Choi, B.S. Kim, J.D. Kim, H.I. Yoon, Y.W. Cho, Decellularized extracellular matrix derived from porcine adipose tissue as a xenogeneic biomaterial for tissue engineering, Tissue Eng Part C Methods 18(11) (2012) 866-876.
    [94] S.L. Wilson, L.E. Sidney, S.E. Dunphy, H.S. Dua, A. Hopkinson, Corneal Decellularization: A Method of Recycling Unsuitable Donor Tissue for Clinical Translation?, Curr Eye Res 41(6) (2016) 769-782.
    [95] Y. Hashimoto, S. Funamoto, S. Sasaki, T. Honda, S. Hattori, K. Nam, T. Kimura, M. Mochizuki, T. Fujisato, H. Kobayashi, A. Kishida, Preparation and characterization of decellularized cornea using high-hydrostatic pressurization for corneal tissue engineering, Biomaterials 31(14) (2010) 3941-3948.
    [96] Y.M. Zhu, E. Susini, H. Drew, M. Vellard, Glycosaminoglycan-induced Immune Responses in Monocytic/Macrophage Cells: First Clues of a Possible Inflammation Process in MPS IVA (Morquio), Mol Genet Metab 105(2) (2012) S68-S68.
    [97] L. Zhang, Glycosaminoglycans in development, health and disease. Preface, Prog Mol Biol Transl Sci 93 (2010) xvii-xviii.

    下載圖示 校內:2020-12-31公開
    校外:2022-12-31公開
    QR CODE