簡易檢索 / 詳目顯示

研究生: 姚智凱
Yao, Chih-Kai
論文名稱: 聚乳酸薄膜表面之型態及化學修飾以誘導許旺細胞貼附及其定向生長
Morphological and chemical modification on the poly-L-lactic acid film surface for the induction of Schwann cell adhesion and directional outgrowth
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 微溝槽微觸壓印聚乳酸RGD氨基酸序列
外文關鍵詞: micro-grooves, micro-contact imprint, RGD peptide, PLLA
相關次數: 點閱:69下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當周邊神經受損時,若未進行適當處理,神經斷裂處的軸突會產生分岔導致斷端神經失去功能。而若經適當處理,神經細胞的軸突卻有可能從斷裂的近端穿越神經受損區段,重新連接斷端兩側的神經使功能恢復。近年來,組織工程技術為周邊神經再生的主要研究重點。可吸收性聚乳酸做為組織用支架而利於神經再生功能,已受到相當的注意。因其適當的機械強度、可塑性、分解周期等特性,聚乳酸常用於神經再生導管的結構材料。本研究以聚乳酸為基材,將表面形成化學與構型的修飾,以引導貼附細胞產生定向、定域的生長。
    首先,以熱壓印的方式於聚乳酸模板上製成微溝構型,再濺鍍金粒子於微溝槽的底面。之後,利用微接觸壓印技術形成兩個化學修飾的表面,亦即將ODT (Octadecanethiol)自組裝單分子層接枝於間壁表面;而溝槽內部則接枝RGD氨基酸序列。前者可阻止細胞橫越間壁而不互相跨越,後者可形成促進細胞貼附的表面。藉此,細胞可被引導並沿著微溝槽生長。
    由X光光電子能譜分析結果顯示:RGD及ODT分子可經微接觸壓印,成功地接在鍍金之聚乳酸構型模板上。而由許旺細胞的細胞貼附於化學修飾之鍍金聚乳酸模板上的形態及數目也顯示:RGD修飾的表面,其誘導細胞貼附數量高於聚乳酸模板表面約2.14倍,且使許旺細胞呈固定貼附;而ODT自組裝單分子形成的疏水性表層上能抑制細胞貼附。整體而言,藉由RGD氨基酸、疏水性ODT分子、及微溝構型的組合,可使許旺細胞貼附於RGD氨基酸表面,並調適其延伸方向。未來可針對不同區域之組織支架進行修飾與構型,以誘導或抑制細胞貼附,並進一步控制神經的定向生長。
    關鍵字:聚乳酸、微溝槽、RGD氨基酸序列、ODT自組裝單分子層、微觸壓印、許旺細胞。

    When the peripheral nerve wounded, nerve injuries complicate successful rehabilitation, because mature neurons do not replicate. Under right conditions, however, axon extensions can be occurred over gaps by reconnecting with the distal stump and reestablishing functional contact. Peripheral nerve injury that results in long gaps requires surgical implantation through a bridge with guidance channels to restore full function of neuron. In recent years, tissue engineering intending to regenerate peripheral nerves has been developed into a major research topic.

    Bioadsorbable poly-L-lactic acid (PLLA) used as a functional scaffold for nerve regeneration have paid much attention. Because of its proper characteristic in mechanical property, plasticity and degradation period, PLLA is commonly applied as a scaffold material for nerve conduit. In this study, PLLA was used as the base substrate and then structured with chemical and topographical modifications. Along a specific route, the adhered cells can be guided with directional growth.

    Firstly, PLLA film was patterned with microgrooves by hot embossing and then the as-patterned surface was coated with Au. Subsequently, two distinct chemically-stimulated surfaces, namely, thiol-modified arginine- glycine- aspartic (RGD) along the microgrooves and hydrophobic octadecanethiol (ODT) self-assembly monolayers between the microgrooves, were respectively created by micro-contact imprint. For the former, it might inhibit the cells from crossing over the micro-grooves; for the latter, it might promote cells attachment. As a consequence, the cells were presumably guided and competent to grow along the micro-grooves.

    Experimental results from HRXPS demonstrated that RGD peptides and ODT molecules were successfully immobilized on Au-coated and micro-patterned PLLA by micro-contact printing. From the morphologies and quantity of adhered Schwann cells on the modified Au-coated PLLA surfaces, the results exhibited that the cells firmly attached on the RGD-modified surface and increased 2.14 times as compared with those on the patterned PLLA surface. On the other hand, the ODT-modified Au-coated PLLA surface was competent to prevent Schwann cells from anchoring on the surface. In summary, Schwann cells adhesion and their outgrowth direction were greatly regulated by the combination of RGD peptides, hydrophobic ODT molecules, and topographical microgrooves. It is therefore promising to modify and arrange a select region of tissue scaffolds to induce or inhibit cells attachment and furthermore to control the outgrowth of nerve cells.

    Keywords: poly-L-lactic acid, micro-grooves, RGD peptide, ODT molecules, micro-contact imprint, Schwann cells.

    第一章 緒論 1 1.1研究背景 1 1.2研究動機 2 1.3文獻回顧 3 1.3.1 神經細胞 3 1.3.2 周邊神經修復 5 1.3.3 神經再生支架材料 7 1.3.4 表面微構型因素對細胞效應 8 1.3.5化學性表面改質因素對細胞效應 9 1.3.6 微觸壓印自組裝單分子層進行表面改質 12 1.4 研究大綱與目的 13 第二章 基礎理論 15 2.1 生物可吸收性高分子 15 2.1.1 聚乳酸的合成 15 2-1.2 聚乳酸的物化性質 16 2.2自組裝單分子層 17 2.2.1 自組裝單分子層結構 18 2.2.2 微觸壓印製程 20 2.3 誘導細胞貼附胺基酸序列分子 21 第三章 材料與方法 24 3.1 實驗材料 24 3.1.1 生物可吸收性高分子薄膜製備 24 3.1.2 矽基母模製備 24 3.1.3 化學性表面改質 24 3.1.4 許旺細胞培養 24 3.2 實驗流程 25 3.3 實驗步驟 26 3.3.1 微構型熱壓印母模製備 26 3.3.2 聚乳酸薄膜微構型與表面改質 26 3.3.3 表面形貌觀測 30 3.3.4 表面化學性質分析 30 3.3.5 許旺細胞培養與貼附測試 31 3.4 實驗儀器與器材設備 31 3.4.1 多功能連續式對位直寫微壓印系統 31 3.4.2 離子束濺鍍機 32 3.4.3 掃瞄式電子顯微鏡 34 3.4.4 X光光電子能譜分析儀 35 3-4.5 靜態接觸角量測儀 36 3.4.6 低掠角X光繞射儀 37 第四章 結果與討論 38 4-1 高溫熱壓印對PLLA薄膜進行微構型 38 4-1.1 微米級溝槽構型製程分析 38 4-1.2 表面濺鍍金薄層之掃描式探針顯微鏡分析 42 4-2.3 表面濺鍍金薄層之低掠角X光繞射分析 46 4-2 微觸壓印改質後表面性質分析及化學元素測定47 4-2.1 X光光電子能譜分析 47 4-2.2 靜態水滴接觸角觀測 54 4-3 表面改質後神經再生支架生物親和性探討 55 4-3.1 微溝槽對許旺細胞排序角度分析 56 4-3.2化學性改質表面對許旺細胞貼附形態分析 58 4-3.3 表面改質對許旺細胞貼附數量分析 63 4-3.4 結合微構型與化學誘導因子定向許旺細胞生長形態分析 65 結論 71

    [1] V. Maquet, D. Martin, and B. Malgrange, “Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds”, Biomedical Materials Research, Vol. 52, 639-651, 2000.
    [2] I. V. Yannas, “Synthesis of tissues and organs”, Chemical Biological Chemistry, Vol. 5, 26-39, 2004.
    [3] A. Bozkurt, and R. Deumen, “In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels”, Biomaterials, Vol. 30(2), 169-179, 2009.
    [4] R. V. Bellamkonda, “Peripheral nerve regeneration: An opinion on channels, scaffolds and anisotropy”, Biomaterials, Vol. 27, 3515–3518, 2006.
    [5] 游祥明等, “解剖學”, 匯華圖書出版有限公司, 258-264, 1997.
    [6] W. K. Stephen, 張人驥等譯, “神經生物學—從神經元到大腦”, 淑馨出版社, 333-350, 1995.
    [7] Junquerira, 王世晞等譯, “基礎組織學”, 藝軒圖書出版社, 273-320, 1995.
    [8] A. A. Lavdas, R. Matsas, R. S. Larry, “Schwann cell morphology”, Encyclopedia of Neuroscience, 475-484, 2009.
    [9] M.F. Meek, and J. H. Coert, “Clinical use of nerve conduits in peripheral nerve repair: review of the literature”, Journal of Reconstructive Microsurgery, Vol. 18, 98-109, 2002.
    [10] A. H. Carole, and E. R. Gregory, “The development of bioartificial nerve grafts for peripheral nerve regeneration”, Trends of Biotechnology, Vol. 16, 163-168, 1998.
    [11] P. M. Richardson, and R. S. Larry, “Peripheral nerve regeneration: An overview”, Encyclopedia of Neuroscience, 557-560, 2009.
    [12] M. R. Feneley, J. W. Fawcett, and R. J. Keynes, ‘The role of Schwann cells in the regeneration of peripheral nerve axons through muscle basal lamina grafts”, Experimental Neurology, Vol. 114, 275-285, 1991.
    [13] K. Torigoe, H. Tanaka, A. Takahashi, A. Awaya, and K. Hashimoto, “Basic behavior of migratory Schwann cells in peripheral nerve regeneration”, Experimental Neurology, Vol. 137, 301-308, 1996.
    [14] V. Guenard, N. Kleitman, T. K. Morrissey, and R. P. Bunge, “Syngeneic Schwann cells derived from adult nerves seeded in semi-permeable guidance channels enhance peripheral nerve regeneration”, Journal of Neuroscience, Vol. 12, 3310-3320, 1992.
    [15] M. Hakkarainen, A. C. Albertsson, and S. Karlsson, “Weight losses and molecular weight changes correlated with the evolution of hydroxyacids in simulated in vivo degradation of homo- and copolymers of PLA and PGA”, Polymer Degradation and Stability, Vol. 52, 283-291, 1996.
    [16] G. Evans, K. Brandt, S. Katz, P. Chauvin, L. Otto, M. Bogle, B. Wang, R. Meszlenyi, L. Lu, A. Mikos, and C. J. Patrick, “Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration”, Biomaterials, Vol. 23, 841-848, 2002.
    [17] C. Miller, H. Shanks, A. Witt, G. Rutkowski, and S. Mallapragada, “Oriented Schwann cell growth on micropatterned biodegradable polymer substrates”, Biomaterials, Vol. 22, 1263-1269, 2001.
    [18] D. R. Jung, and R. Kapur, “Topographical and physicochemical modification of material surface to enable patterning of living cells”, Critical Reviews in Biotechnology, Vol. 21, 111-154, 2001.
    [19] D. C. Turner, J. Lawson, P. Dollenmerier, R. Ehrissman, and M. Chiquet, “Guidance of myeogenic cell migration by oriented deposites of fibronectin”, Developmental Biology, Vol. 95, 497-504, 1983.
    [20] H. C. Tai, and M. B. Helen, “Neurite outgrowth and growth cone morphology on micro patterned surfaces”, Biotechnology Progress, Vol. 14, 364-370, 1998.
    [21] M. T. Deanna, and M. B. Helen, “Schwann cell response to micro patterned laminin surfaces. “ Tissue Engineering, Vol. 7(3), 247-265, 2001.
    [22] V. Barbier, M. Tatoulian, H. Li, F. A. Khonsari, A. Ajdari, and P. Tabeling, “Stable modification of PDMS surface properties by plasma polymerization: Application to the formation of double emulsions in microfluidic systems”, Langmuir, Vol. 22, 5230-5232, 2006.
    [23] A. L. Berrier, and K. M. Yamada, “Cell–matrix adhesion”, Journal of Cellular Physiology, Vol. 213, 565–573, 2007.
    [24] W. P. Daley, S. B. Peters, and M. Larsen, “Extracellular matrix dynamics in development and regenerative medicine”, Journal of Cell Science, Vol. 121, 255–264, 2008.
    [25] E. Zamir, and B. Geiger, “Molecular complexity and dynamics of cell–matrix adhesions”, Journal of Cell Science, Vol. 114, 3583-3590, 2001.
    [26] B. D. Ratner, and S. J. Bryant, “Biomaterials: where we have been and where we are going”, Annual Review of Biomedical Engineering, Vol. 6, 41-75, 2004.
    [27] B. G. Keselowsky, D. M. Collard, and A. J. Garcia, “Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion”, Journal of Biomedical Materials Research A, Vol. 66, 247-59, 2003.
    [28] U. Klueh, T. Seery, D.G. Castner, J. D. Bryers, and D. L. Kreutzer, “Binding and orientation of fibronectin to silanated glass surfaces using immobilized bacterial adhesinrelated peptides”, Biomaterials, Vol. 24, 3877-3884, 2003.
    [29] K. E. Schmalenberg, H. M. Buettner, and K. E. Uhrich, “Microcontact printing of proteins on oxygen plasma-activated poly(methyl methacrylate)”, Biomaterials, Vol. 25, 1851-1857, 2004.
    [30] E. Servoli, D. Maniglio, M. R. Aguilar, A. Motta, and J. S. Roman, L. A. Belfiore, “Quantitative analysis of protein adsorption via atomic force microscopy and surface plasmon resonance”, Macromolecular Bioscience, Vol. 8, 1126-1134, 2008
    [31] U. Hersel, C. Dahmen, and H. Kessler, “RGD modified polymers: biomaterials for stimulated cell adhesion and beyond”, Biomaterials, Vol. 24, 4385–4415 , 2003.
    [32] S. Kalinina, H. Gliemann, M. Lopez-Garca, A. Petershans, J. Auernheimer, and T. Schimmel, “Isothiocyanate-functionalized RGD peptides for tailoring cell-adhesive surface patterns”, Biomaterials, Vol. 29, 3004-3014, 2008.
    [33] J. L. Charest, M. T. Eliason, A. J. Garcia, and W. P. King, “Combined microscale mechanical topography and chemical patterns on polymer cell culture substrates”, Biomaterials, Vol. 27, 2487-2494, 2006.
    [34] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology”, Chemical reviews, Vol. 105, 1103-1169, 2005.
    [35] E. Delamarche, H. Schmid, A. Bietsch, N. B. Larsen, H. Rothuizen, B. Michel, and H. Biebuyck, “Transport mechanisms of alkanethiols during microcontact printing on gold”, Journal of Physical Chemistry B, Vol. 102, 3324-3334, 1998.
    [36] 吳奕德, “利用真空濕式反應室進行即時就地膠原蛋白固定之研究”, 私立中原大學醫學工程學系碩士學位論文, 2000.
    [37] 簡儀禎, “超薄蝕刻阻劑在金的圖型制作表面之抗蝕刻機制研究”,國立成功大學材料科學及工程學系碩士學位論文, 2006.
    [38] M. D. Porter, T. B. Bright, A. B. Allara, and C. E. D. Christopher, “Spontaneously organize molecular assemblies. 4. structural characterization of n-alklythiol monolayers on gold by optical ellipsometry, infrared spectroscopy and electrochemistry”, Journal of American Chemical Society, Vol. 109, 3559-3568, 1987.
    [39] P. E. Laibinis, G. M. Whiteside, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, “Comparison of the structures an wetting properties of self assembled monolayers of n-alkanethiols on the coinage metal surfaces, Cu, Ag, Au”, Journal of American Chemical Society, Vol. 113, 7152-7167, 1991.
    [40] B. T. Houseman, and M. Mrksich, “The microenvironment of immobilized Arg-Gly-Asp peptides is an important determinant of cell adhesion”, Biomaterials, Vol. 22, 943-955, 2001.
    [41] M. A. Biesalski, A. Knaebel, R. Tu, and M. Tirrell, “Cell adhesion on a polymerized pep tide-amphiphile monolayer”, Biomaterials, Vol. 27, 1259-1269, 2006.
    [42] H. J. Cha, D. S. Hwang, and S. B. Sim, “Cell adhesion biomaterial based on mussel adhesive protein fused with RGD peptide”, Biomaterials, Vol. 28, 4039-4046, 2007.
    [43] J. P. Thiery, and V. Prtit, “Focal adhesions:structure and dynamics”, Biology of the Cell, Vol. 92, 477-494, 2000.
    [44] E. A. Clark, and J. S. Brown, “Integrins and signal transduction pathway: the road taken”, Science, 268-233, 1995.
    [45] Hong Xiao著, 羅正忠, 張鼎張譯, “半導體製程技術導論”, 學銘圖書有限公司, 2006.
    [46] 莊達人, “VLSI 製造技術”, 高立圖書有限公司, 2003.
    [47] G. Kumar, Y. C. Wang, C. Co, and C. C. Ho, “Spatially controlled cell engineering on biomaterials using polyelectrolytes”, Langmuir, Vol. 19, 10550-10556, 2003.

    下載圖示 校內:2012-07-21公開
    校外:2012-07-21公開
    QR CODE