簡易檢索 / 詳目顯示

研究生: 王立民
Wang, Li-Min
論文名稱: 價格全距的資訊內涵
The Information Content of Price Range
指導教授: 江明憲
Chiang, Min-Hsien
學位類別: 博士
Doctor
系所名稱: 管理學院 - 國際企業研究所
Institute of International Business
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 73
中文關鍵詞: 偏誤調整(C)DCC-RGARCH關聯性結構價格全距Range-augmented GARCHRGARCH波動性預測
外文關鍵詞: Bias correction, (C)DCC-RGARCH, Copula, High-low range, Range-augmented GARCH, RGARCH, Volatility forecasting
相關次數: 點閱:201下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文的動機來自於range-based volatility 模型在波動性的估計及預測上具有準確的結果。然而,不同於過去的文獻,我將重點放在利用價格全距所提供的資訊來強化單變量與多變量return-based GARCH model的估計準確度,而非直接是由價格全距的分配著手。這篇論文涵蓋兩個主題。

    在第一章中,我提出一個共同利用報酬率與價格全距兩者的資訊來估計波動性的方法,稱為range-augmented GARCH (RGARCH) 模型。其中所提出的兩種方法其估計的結果均優於傳統的GARCH,GJR-GARCH,與EGARCH模型,且其估計的準確性與range-based模型中的REGARCH模型相當。此外,本方法也可以估計出對於價格全距的偏誤調整量。

    在第二章中,報酬率共變異數的估計更進一步加入了價格全距的資訊。本文提出的模型稱為copula-based dynamic conditional correlation range-augmented GARCH (CDCC-RGARCH) 模型。此模型可以同時討論單變量序列波動性的估計準確性與誤差項分配對於共變異數估計的影響。實證的結果顯示價格全距的資訊會增加報酬率共變異數估計的準確性。

    The work presented in this dissertation was motivated by the good performance of the range-based volatility estimators in volatility estimation and forecasting. Instead of directly modeling the price range distribution, I investigate how to improve volatility estimation and forecasting through incorporating the information content of price range to the return-based univariate and multivariate GARCH models. This dissertation is written in two Chapters.
    In Chapter One, volatility estimators incorporating the information provided by price return and high-low range are proposed. Two specifications of the conditional variance of the proposed range-augmented GARCH (RGARCH) class models are demonstrated to have better volatility estimation than three conventional GARCH-type models, the return-based GARCH, EGARCH, and GJR-GARCH models as well as have equivalent performance compared to the range-based REGARCH model. In addition, a dynamic bias correction component for the biased volatility estimator of high-low range also can be extracted through the proposed approach.
    In Chapter Two, the information content of the price range is further investigated with regard to the return covariance estimation. A copula-based dynamic conditional correlation range-augmented GARCH (CDCC-RGARCH) model is proposed to investigate the accuracy of covariance estimation with respect to the volatility estimator and error distribution. The empirical results show that price range is crucial to multivariate volatility modeling with regard to estimation accuracy.

    摘要 I ABSTRACT II 誌謝 III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII Chapter 1. Volatility Forecasting Based on Price Return and High-low Range 1 1. Introduction 2 2. The range-augmented GARCH model 6 2.1. The role of high-low range 6 2.2. The relation between price return and high-low range 8 2.3. Specifications for the conditional variance 9 3. Measuring estimation and forecasting performance 13 4. Empirical study 15 4.1. Preliminary analysis 16 4.2. Parameter estimation and in-sample performance 17 4.3. The performance of volatility forecasting 18 5. Conclusions 20 Chapter 2. Covariance Estimation with Price Range Information 29 1. Introduction 30 2. The model 34 2.1. The range-augmented GARCH model 34 2.2. The D-vine copula 36 2.3. The copula-based DCC-RGARCH model 38 3. Parameter estimation and model comparisons 41 3.1. Data 41 3.2. Preliminary analysis 41 3.3. Parameter estimates of the CDCC-RGARCH models 42 3.4. The performance of covariance estimation 44 4. Evaluating the estimated covariance by the pricing error 45 4.1. Measuring pricing error 47 4.2. Empirical evidence 48 5. Conclusions 48 Appendix A 50 Appendix B 51 References 53

    Aas, K., Czado, C., Frigessi, A., Bakken, H., 2009. Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics 44, 182-198.
    Alizadeh, S., Brandt, M. W., Diebold, F. X., 2002. Range-based estimation of stochastic volatility models. Journal of Finance 57(3), 1047-1091.
    Andersen, T. G., 1996. Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility. Journal of Finance 51(1) 169-204.
    Andersen, T. G., Bollerslev, T., Diebold, F. X., Ebens, H., 2001. The distribution of realized stock return volatility. Journal of Financial Economics 61, 43-76.
    Bannouh, K., van Dijk, D., Martens, M., 2009. Range-based covariance estimation using high-frequency data: the realized co-range. Journal of Financial Econometrics 7(4), 341-372.
    Barndorff-Nielsen, O. E., Shephard, N., 2004. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics. Econometrica 72, 885-925.
    Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, 307-327.
    Bollerslev, T., 1990. Modelling the coherence in short-run nominal exchange rates: a multivariate generalized arch model. The Review of Economics and Statistics 72(3), 498-505.
    Bollerslev, T., Engle, R. F., Wooldridge, J. M., 1988. A capital asset pricing model with time-varying covariances. Journal of Political Economy 96(1), 116-131.
    Bollerslev, T., Wooldridge, J. M., 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariance. Econometric reviews 11(2), 143-172.
    Brandt, M. W., Diebold, F. X., 2006. A no-arbitrage approach to range-based estimation of return covariances and correlations. Journal of Business 79, 61-74.
    Brandt, M. W., Jones, C. S., 2006. Volatility forecasting with range-based EGARCH models. Journal of Business & Economic Statistics 24(4), 470-486.
    Chiang, M. H., Wang, L. M., 2011. Volatility forecasting based on price return and high-low range. Working paper.
    Chollete, L., Heinen, A., Valdesogo, A., 2009. Modeling international financial returns with a multivariate regime-switching copula. Journal of Financial Econometrics, 1-44.
    Chou, R. Y., 2005. Forecasting financial volatilities with extreme values: The Conditional Autoregressive Range (CARR) model. Journal of Money, Credit, and Banking 37(3), 561-582.
    Christopherson, J. A., Ferson, W. E., Classman, D. A., 1998. Conditioning manager alphas on economic information: another look at the persistence of performance. Review of Financial Studies 11(1), 111-142.
    Day, T. E., Lewis, C. M., 1992. Stock market volatility and the information content of stock index options. Journal of Econometrics 52, 267-287.
    Diebold F. X., Gunther, T. A., Tay, A. S., 1998. Evaluating density forecasts with applications to financial risk management. International Economic Review 39(4), 863–883.
    Diebold, F. X., Mariano, R. S., 1995. Comparing predictive accuracy. Journal of Business & Economic Statistics 13(3), 253-263.
    Engle, R. F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica 50(4), 987-1007.
    Engle, R. F., 2000. The econometrics of ultra-high-frequency data. Econometrica 68(1), 1-22.
    Engle, R. F., 2002. Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350.
    Engle, R. F., Hendry D. F., Richard, J. F., 1983. Exogeneity. Econometrica 51(2), 277-304.
    Engle, R. F., Kroner, K. F., 1995. Multivariate simultaneous generalized arch. Econometric Theory 11(1), 122-150.
    Fama, E. F., French, K. R., 1992. The cross-section of expected stock returns. Journal of Finance 47(2), 427-465.
    Fama, E. F., French, K. R., 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33, 3-56.
    Ferson, W. E., Schadt, R. W., 1996. Measuring Fund Strategy and Performance in Changing Economic Conditions. Journal of Finance 51(2), 425-461.
    Fischer, M., Köck, C., Schlüter, S., Weigert, F., 2009. An Empirical Analysis of Multivariate Copula Models. Quantitative Finance 9(7), 839-854.
    Fleming, J., Kirby, C., Ostdiek, B., 2006. Stochastic volatility, trading volume, and the daily flow of information. Journal of Business 79(3), 1551-1590.
    Garman, M. B., Klass, M. J., 1980. On the estimation of security price volatilities from historical data. Journal of Business 53(1), 67-78.
    Ghysels, E., 1998. On stable factor structures in the pricing of risk? Do time-varying betas help or hurt? Journal of Finance 53(2), 549-573.
    Glabadanidis, P., 2009. A dynamic asset pricing model with time-varying factor and idiosyncratic risk. Journal of Financial Econometrics, 1-18.
    Glosten, L. R., Jagannathan, R., Runkle, D. E., 1993. On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48(5), 1779-1801.
    Haff, I. H., Aas, K., Frigessi, A., 2010. On the simplified pair-copula construction - Simply useful or too simplistic? Journal of Multivariate Analysis 101, 1296-1310.
    Hansen, P. R., Lunde, A., 2005. A forecast comparison of volatility models: does anything beat a GARCH(1,1)? Journal of Applied Econometrics 20, 873-889.
    Jacob, J., Vipul, 2008. Estimation and forecasting of stock volatility with range-based etimators. Journal of Futures Markets 28(6), 561-581.
    Jagannathan, R., Wang, Z., 1996. The conditional CAPM and the cross-section of expected returns. Journal of Finance 51(1), 3-53.
    Jegadeesh, N., Titman, S., 1993. Returns to buying winners and selling losers: implications for stock market efficiency. Journal of Finance, 48(1), 65-91.
    Joe, H., 1996. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In: Ruschendorf, L., Schweizer, B., Talyor, M.D. (Eds.), Distributions with Fixed Margins and Related Topics. In: IMS Lecture Notes Monograph Series, vol. 28. pp. 120-141.
    Lamoureux, C. G., Lastrapes, W. D., 1990. Heteroskedasticity in stock return data: volume versus GARCH effects. Journal of Finance 45(1), 221-229.
    Ledoit, O., Santa-Clara, P., Wolf, M., 2003. Flexible multivariate garch modeling with an application to international stock markets. Review of Economics and Statistics 85(3), 735-747.
    Lee, T. H., Long, X., 2009. Copula-based multivariate GARCH model with uncorrelated dependent errors. Journal of Econometrics 150, 207-218.
    Lintner, J., 1965. The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47(1), 13-37.

    Martens, M., van Dijk, D., 2007. Measuring volatility with the realized range. Journal of Econometrics 138, 181-207.
    Martens, M., van Dijk, D., 2007. Measuring volatility with the realized range. Journal of Econometrics 138, 181-207.
    Mayhew, S., Stivers, C., 2003. Stock return dynamics, option volume, and the information content of implied volatility. Journal of Futures Markets 23(7), 615-646.
    Min, A., Czado, C., 2010. Bayesian inference for multivariate copulas using pair-copula constructions. Journal of Financial Econometrics 8(4), 511-546.
    Nelson, D. B., 1991. Conditional heteroskedasticity in asset returns: a new approach. Econometrica 59(2), 347-370.
    Parkinson, M., 1980. The extreme value method for estimating the variance of the rate of return. Journal of Business 53(1), 61-65.
    Patton, A., 2011. Volatility forecast comparison using imperfect volatility proxies. Journal of Econometrics 160, 246-256.
    Rogers, L. C. G., Satchell, S. E., 1991. Estimating variance from high, low and closing prices. The annals of applied probability 1(4), 504-512.
    Sharpe, W. F., 1964. Capital asset prices: a theory of market equilibrium under conditional of risks. Journal of Finance 19(3), 425-442.
    Tse, Y. K., Tsui, K. C., 2002. A multivariate generalized autoregressive conditional heteroscedasticity model with time-varying correlations. Journal of Business & Economic Statistics 20(3), 351-362.
    White, H., 1994. Estimation, Inference and Specification Analysis. Econometric Society Monographs No. 22. Cambridge University Press: Cambridge.
    Wang, K. Q., 2003. Asset pricing with conditioning information: a new test. Journal of Finance 58(1), 161-196.
    Yang, D., Zang, Q., 2000. Drift-independent volatility estimation based on high, low, open, and close prices. Journal of Business 73(3), 477-491.

    下載圖示
    2016-08-08公開
    QR CODE